# coding=utf-8 # Copyright 2018 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from transformers import SPIECE_UNDERLINE, AddedToken, BatchEncoding, T5Tokenizer, T5TokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): FRAMEWORK = "pt" elif is_tf_available(): FRAMEWORK = "tf" else: FRAMEWORK = "jax" @require_sentencepiece @require_tokenizers class T5TokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = T5Tokenizer rust_tokenizer_class = T5TokenizerFast test_rust_tokenizer = True test_sentencepiece = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = T5Tokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "") self.assertEqual(vocab_keys[1], "") self.assertEqual(vocab_keys[-1], "") self.assertEqual(len(vocab_keys), 1_101) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_100) def test_full_tokenizer(self): tokenizer = T5Tokenizer(SAMPLE_VOCAB) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382]) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "", ".", ], ) @cached_property def t5_base_tokenizer(self): return T5Tokenizer.from_pretrained("t5-base") @cached_property def t5_base_tokenizer_fast(self): return T5TokenizerFast.from_pretrained("t5-base") def get_tokenizer(self, **kwargs) -> T5Tokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs) def get_rust_tokenizer(self, **kwargs) -> T5TokenizerFast: return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, pad_token=None, **kwargs) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_eos_treatment(self): tokenizer = self.t5_base_tokenizer batch_with_eos_added = tokenizer(["hi", "I went to the gym", ""]) batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) def test_prepare_batch(self): tokenizer = self.t5_base_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, tokenizer.eos_token_id] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) self.assertIsInstance(batch, BatchEncoding) if FRAMEWORK != "jax": result = list(batch.input_ids.numpy()[0]) else: result = list(batch.input_ids.tolist()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) def test_empty_target_text(self): tokenizer = self.t5_base_tokenizer src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertNotIn("decoder_input_ids", batch) self.assertNotIn("decoder_attention_mask", batch) def test_max_length(self): tokenizer = self.t5_base_tokenizer tgt_text = [ "Summary of the text.", "Another summary.", ] with tokenizer.as_target_tokenizer(): targets = tokenizer( tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK ) self.assertEqual(32, targets["input_ids"].shape[1]) def test_outputs_not_longer_than_maxlen(self): tokenizer = self.t5_base_tokenizer batch = tokenizer( ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK ) self.assertIsInstance(batch, BatchEncoding) # Since T5 does NOT have a max input length, # this test should be changed to the following in Transformers v5: # self.assertEqual(batch.input_ids.shape, (2, 8001)) self.assertEqual(batch.input_ids.shape, (2, 512)) def test_eos_in_input(self): tokenizer = self.t5_base_tokenizer src_text = ["A long paragraph for summarization. "] tgt_text = ["Summary of the text. "] expected_src_tokens = [71, 307, 8986, 21, 4505, 1635, 1707, 5, 1] expected_tgt_tokens = [20698, 13, 8, 1499, 5, 1] batch = tokenizer(src_text) with tokenizer.as_target_tokenizer(): targets = tokenizer(tgt_text) self.assertEqual(expected_src_tokens, batch["input_ids"][0]) self.assertEqual(expected_tgt_tokens, targets["input_ids"][0]) def test_token_type_ids(self): src_text_1 = ["A first paragraph for summarization."] src_text_2 = ["A second paragraph for summarization."] fast_token_type_ids = self.t5_base_tokenizer_fast( src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True ).token_type_ids slow_token_type_ids = self.t5_base_tokenizer( src_text_1, src_text_2, add_special_tokens=True, return_token_type_ids=True ).token_type_ids self.assertEqual(slow_token_type_ids, fast_token_type_ids) self.assertEqual(len(slow_token_type_ids[0]), 18) def test_fast_and_slow_same_result(self): src_text = " Today is nice day " tgt_ids = [0, 1960, 19, 2, 1245, 239, 1] tgt_text = " Today is nice day" fast_ids = self.t5_base_tokenizer_fast(src_text, add_special_tokens=False).input_ids slow_ids = self.t5_base_tokenizer(src_text, add_special_tokens=False).input_ids self.assertEqual(tgt_ids, fast_ids) self.assertEqual(tgt_ids, slow_ids) fast_text = self.t5_base_tokenizer_fast.decode(fast_ids) slow_text = self.t5_base_tokenizer.decode(fast_ids) self.assertEqual(tgt_text, fast_text) self.assertEqual(tgt_text, slow_text) def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [f"" for i in range(100)] + [AddedToken("", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) p_output = tokenizer_p.encode("Hey this is a token") r_output = tokenizer_r.encode("Hey this is a token") cr_output = tokenizer_cr.encode("Hey this is a token") special_token_id = tokenizer_r.encode("", add_special_tokens=False)[0] self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in r_output) self.assertTrue(special_token_id in cr_output) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) added_tokens_extra_ids = [f"" for i in range(100)] special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained( tmp_dir, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) ), ) # overwritten from `test_tokenization_common` since T5 has no max length def test_pretrained_model_lists(self): # We should have at least one default checkpoint for each tokenizer # We should specify the max input length as well (used in some part to list the pretrained checkpoints) self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = {'input_ids': [[31220, 7, 41, 14034, 801, 38, 3, 102, 63, 17, 127, 524, 18, 7031, 2032, 277, 11, 3, 102, 63, 17, 127, 524, 18, 2026, 17, 10761, 18, 7041, 61, 795, 879, 18, 19681, 4648, 7, 41, 12920, 382, 6, 350, 6383, 4949, 6, 2158, 12920, 382, 9, 6, 3, 4, 11160, 6, 2043, 17153, 279, 49, 17, 6, 3, 4, 434, 9688, 11439, 21, 6869, 10509, 17725, 41, 567, 9138, 61, 11, 6869, 10509, 11946, 41, 18207, 517, 61, 28, 147, 3538, 1220, 7140, 10761, 2250, 16, 910, 1220, 8024, 11, 1659, 1413, 32, 883, 2020, 344, 2215, 226, 6, 12901, 382, 127, 524, 11, 4738, 7, 127, 15390, 5, 1], [272, 24203, 19, 876, 12, 554, 18, 9719, 1659, 2647, 26352, 6497, 7, 45, 73, 9339, 400, 26, 1499, 57, 22801, 10760, 30, 321, 646, 11, 269, 2625, 16, 66, 7500, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [37, 1704, 4216, 3, 20400, 4418, 7, 147, 8, 19743, 1782, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="t5-base", revision="5a7ff2d8f5117c194c7e32ec1ccbf04642cca99b", )