# EnCodec ## Overview The EnCodec neural codec model was proposed in [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. The abstract from the paper is the following: *We introduce a state-of-the-art real-time, high-fidelity, audio codec leveraging neural networks. It consists in a streaming encoder-decoder architecture with quantized latent space trained in an end-to-end fashion. We simplify and speed-up the training by using a single multiscale spectrogram adversary that efficiently reduces artifacts and produce high-quality samples. We introduce a novel loss balancer mechanism to stabilize training: the weight of a loss now defines the fraction of the overall gradient it should represent, thus decoupling the choice of this hyper-parameter from the typical scale of the loss. Finally, we study how lightweight Transformer models can be used to further compress the obtained representation by up to 40%, while staying faster than real time. We provide a detailed description of the key design choices of the proposed model including: training objective, architectural changes and a study of various perceptual loss functions. We present an extensive subjective evaluation (MUSHRA tests) together with an ablation study for a range of bandwidths and audio domains, including speech, noisy-reverberant speech, and music. Our approach is superior to the baselines methods across all evaluated settings, considering both 24 kHz monophonic and 48 kHz stereophonic audio.* This model was contributed by [Matthijs](https://huggingface.co/Matthijs), [Patrick Von Platen](https://huggingface.co/patrickvonplaten) and [Arthur Zucker](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/facebookresearch/encodec). ## Usage example Here is a quick example of how to encode and decode an audio using this model: ```python >>> from datasets import load_dataset, Audio >>> from transformers import EncodecModel, AutoProcessor >>> librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> model = EncodecModel.from_pretrained("facebook/encodec_24khz") >>> processor = AutoProcessor.from_pretrained("facebook/encodec_24khz") >>> librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate)) >>> audio_sample = librispeech_dummy[-1]["audio"]["array"] >>> inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt") >>> encoder_outputs = model.encode(inputs["input_values"], inputs["padding_mask"]) >>> audio_values = model.decode(encoder_outputs.audio_codes, encoder_outputs.audio_scales, inputs["padding_mask"])[0] >>> # or the equivalent with a forward pass >>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values ``` ## EncodecConfig [[autodoc]] EncodecConfig ## EncodecFeatureExtractor [[autodoc]] EncodecFeatureExtractor - __call__ ## EncodecModel [[autodoc]] EncodecModel - decode - encode - forward