# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Dict, Union import numpy as np from transformers import is_torch_available, is_vision_available from transformers.agents.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText from transformers.testing_utils import get_tests_dir, is_agent_test if is_torch_available(): import torch if is_vision_available(): from PIL import Image AUTHORIZED_TYPES = ["text", "audio", "image", "any"] def create_inputs(tool_inputs: Dict[str, Dict[Union[str, type], str]]): inputs = {} for input_name, input_desc in tool_inputs.items(): input_type = input_desc["type"] if input_type == "text": inputs[input_name] = "Text input" elif input_type == "image": inputs[input_name] = Image.open( Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" ).resize((512, 512)) elif input_type == "audio": inputs[input_name] = np.ones(3000) else: raise ValueError(f"Invalid type requested: {input_type}") return inputs def output_type(output): if isinstance(output, (str, AgentText)): return "text" elif isinstance(output, (Image.Image, AgentImage)): return "image" elif isinstance(output, (torch.Tensor, AgentAudio)): return "audio" else: raise TypeError(f"Invalid output: {output}") @is_agent_test class ToolTesterMixin: def test_inputs_output(self): self.assertTrue(hasattr(self.tool, "inputs")) self.assertTrue(hasattr(self.tool, "output_type")) inputs = self.tool.inputs self.assertTrue(isinstance(inputs, dict)) for _, input_spec in inputs.items(): self.assertTrue("type" in input_spec) self.assertTrue("description" in input_spec) self.assertTrue(input_spec["type"] in AUTHORIZED_TYPES) self.assertTrue(isinstance(input_spec["description"], str)) output_type = self.tool.output_type self.assertTrue(output_type in AUTHORIZED_TYPES) def test_common_attributes(self): self.assertTrue(hasattr(self.tool, "description")) self.assertTrue(hasattr(self.tool, "name")) self.assertTrue(hasattr(self.tool, "inputs")) self.assertTrue(hasattr(self.tool, "output_type")) def test_agent_type_output(self): inputs = create_inputs(self.tool.inputs) output = self.tool(**inputs) agent_type = AGENT_TYPE_MAPPING[self.tool.output_type] self.assertTrue(isinstance(output, agent_type)) def test_agent_types_inputs(self): inputs = create_inputs(self.tool.inputs) _inputs = [] for _input, expected_input in zip(inputs, self.tool.inputs.values()): input_type = expected_input["type"] _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) output_type = AGENT_TYPE_MAPPING[self.tool.output_type] # Should not raise an error output = self.tool(**inputs) self.assertTrue(isinstance(output, output_type))