# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, BridgeTowerImageProcessor, BridgeTowerProcessor, RobertaTokenizerFast, ) @require_vision class BridgeTowerProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = BridgeTowerProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = BridgeTowerImageProcessor() tokenizer = RobertaTokenizerFast.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") processor = BridgeTowerProcessor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) # Some kwargs tests are overriden from common tests to handle shortest_edge # and size_divisor behaviour @require_torch @require_vision def test_image_processor_defaults_preserved_by_image_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component( "image_processor", crop_size={"shortest_edge": 234, "longest_edge": 234}, ) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertEqual(len(inputs["pixel_values"][0][0]), 234) @require_torch @require_vision def test_structured_kwargs_nested_from_dict(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": { "crop_size": {"shortest_edge": 214}, }, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) @require_torch @require_vision def test_kwargs_overrides_default_image_processor_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", crop_size={"shortest_edge": 234}) tokenizer = self.get_component("tokenizer", max_length=117) if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, crop_size={"shortest_edge": 224}) self.assertEqual(len(inputs["pixel_values"][0][0]), 224) @require_torch @require_vision def test_unstructured_kwargs_batched(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer", "upper older longer string"] image_input = self.prepare_image_inputs(batch_size=2) inputs = processor( text=input_str, images=image_input, return_tensors="pt", crop_size={"shortest_edge": 214}, padding="longest", max_length=76, ) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 6) @require_torch @require_vision def test_unstructured_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", crop_size={"shortest_edge": 214}, padding="max_length", max_length=76, ) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) @require_torch @require_vision def test_structured_kwargs_nested(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"crop_size": {"shortest_edge": 214}}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 76)