# 智能体,超强版 - 多智能体、外部工具等 [[open-in-colab]] ### 什么是智能体? > [!TIP] > 如果你是 `transformers.agents` 的新手,请先阅读主文档 [智能体文档 ](./agents). 在本页面中,我们将重点介绍 `transformers.agents` 的几种高级用法。 ## 多智能体 多智能体功能是微软框架 [Autogen](https://huggingface.co/papers/2308.08155) 中引入的。 它的意思是让多个智能体一起工作来解决任务,而不是只有一个智能体。 经验表明,在大多数基准测试中,这种方法能带来更好的性能。之所以有更好的性能,原因很简单:对于许多任务,通常我们更愿意让多个单独的单元专注于子任务,而不是让一个系统做所有事情。这里,拥有不同工具集和记忆的多个智能体可以实现高效的专业化。 你可以轻松地用 `transformers.agents` 构建层次化的多智能体系统。 为此,需要将智能体封装在 [`ManagedAgent`] 对象中。这个对象需要 `agent`、`name` 和 `description` 这几个参数,这些信息会嵌入到管理智能体的系统提示中,帮助它知道如何调用这个管理的智能体,就像我们对工具所做的那样。 下面是一个通过使用我们的 [`DuckDuckGoSearchTool`] 创建一个管理特定网络搜索智能体的示例: ```py from transformers.agents import ReactCodeAgent, HfApiEngine, DuckDuckGoSearchTool, ManagedAgent llm_engine = HfApiEngine() web_agent = ReactCodeAgent(tools=[DuckDuckGoSearchTool()], llm_engine=llm_engine) managed_web_agent = ManagedAgent( agent=web_agent, name="web_search", description="Runs web searches for you. Give it your query as an argument." ) manager_agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, managed_agents=[managed_web_agent] ) manager_agent.run("Who is the CEO of Hugging Face?") ``` > [!TIP] > 如果你想深入了解如何高效地实现多智能体系统,请查看 [how we pushed our multi-agent system to the top of the GAIA leaderboard](https://huggingface.co/blog/beating-gaia). ## 高级工具使用 ### 通过子类化 Tool 来直接定义工具,并将其共享到 Hub 让我们再次使用主文档中的工具示例,我们已经实现了一个 `tool` 装饰器。 如果你需要添加一些变化,比如为工具自定义属性,可以按照更细粒度的方法构建工具:构建一个继承自 [`Tool`] 超类的类。 自定义工具需要: - `name` 属性:表示工具本身的名称,通常描述工具的作用。由于代码返回了针对任务下载量最多的模型,我们将其命名为 model_download_counter。 - `description` 属性:用于填充智能体的系统提示。 - `inputs` 属性:这是一个包含 "type" 和 "description" 键的字典。它包含了有助于 Python 解释器做出选择的输入信息。 - `output_type` 属性:指定输出类型。 - `forward` 方法:其中包含执行推理代码。 `inputs` 和 `output_type` 的类型应当是 [Pydantic 格式](https://docs.pydantic.dev/latest/concepts/json_schema/#generating-json-schema)。 ```python from transformers import Tool from huggingface_hub import list_models class HFModelDownloadsTool(Tool): name = "model_download_counter" description = """ This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. It returns the name of the checkpoint.""" inputs = { "task": { "type": "string", "description": "the task category (such as text-classification, depth-estimation, etc)", } } output_type = "string" def forward(self, task: str): model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) return model.id ``` 现在,自定义的 `HfModelDownloadsTool` 类已经准备好,可以将其保存到名为 `model_downloads.py` 的文件中,并导入使用。 ```python from model_downloads import HFModelDownloadsTool tool = HFModelDownloadsTool() ``` 你还可以通过调用 [`~Tool.push_to_hub`] 将自定义工具推送到 Hub。确保你已经为该工具创建了一个仓库,并使用具有读取访问权限的许可。 ```python tool.push_to_hub("{your_username}/hf-model-downloads") ``` 通过 [`~Tool.load_tool`] 函数加载工具,并将其传递给智能体的 tools 参数。 ```python from transformers import load_tool, CodeAgent model_download_tool = load_tool("m-ric/hf-model-downloads") ``` ### 将 Space 导入为工具 🚀 你可以直接通过 [`Tool.from_space`] 方法将 Hub 上的 Space 导入为工具! 只需要提供 Space 在 Hub 上的 ID、名称和描述,帮助智能体理解工具的作用。在幕后,这将使用 [`gradio-client`](https://pypi.org/project/gradio-client/) 库来调用 Space。 例如,下面是从 Hub 导入 `FLUX.1-dev` Space 并用其生成图像的示例: ``` from transformers import Tool image_generation_tool = Tool.from_space( "black-forest-labs/FLUX.1-dev", name="image_generator", description="Generate an image from a prompt") image_generation_tool("A sunny beach") ``` 看!这就是你生成的图像!🏖️ 然后,你可以像使用其他工具一样使用这个工具。例如,改进提示 `穿宇航服的兔子` 并生成其图像: ```python from transformers import ReactCodeAgent agent = ReactCodeAgent(tools=[image_generation_tool]) agent.run( "Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit' ) ``` ```text === Agent thoughts: improved_prompt could be "A bright blue space suit wearing rabbit, on the surface of the moon, under a bright orange sunset, with the Earth visible in the background" Now that I have improved the prompt, I can use the image generator tool to generate an image based on this prompt. >>> Agent is executing the code below: image = image_generator(prompt="A bright blue space suit wearing rabbit, on the surface of the moon, under a bright orange sunset, with the Earth visible in the background") final_answer(image) ``` 这真酷吧?🤩 ### 使用 gradio-tools [gradio-tools](https://github.com/freddyaboulton/gradio-tools) 是一个强大的库,允许使用 Hugging Face Spaces 作为工具。它支持许多现有的 Spaces,也支持自定义 Spaces。 transformers 支持通过 [`Tool.from_gradio`] 方法使用 `gradio_tools`。例如,下面是如何使用来自 `gradio-tools` 工具包的 [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) 来改进提示,以生成更好的图像: 导入和实例化工具,并将其传递给 `Tool.from_gradio` 方法: ```python from gradio_tools import StableDiffusionPromptGeneratorTool from transformers import Tool, load_tool, CodeAgent gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool() prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool) ``` > [!WARNING] > gradio-tools 需要 **文本** 输入和输出,即使在处理像图像和音频这样的不同模态时也是如此。目前,图像和音频的输入输出与此不兼容。 ### 使用 LangChain 工具 我们很喜欢 LangChain,并认为它有一套非常有吸引力的工具。 要从 LangChain 导入工具,可以使用 `from_langchain()` 方法。 例如,下面是如何使用它来重新创建上面介绍的搜索结果,使用一个 LangChain 网络搜索工具。该工具需要 `pip install google-search-results` 来正常工作。 ```python from langchain.agents import load_tools from transformers import Tool, ReactCodeAgent search_tool = Tool.from_langchain(load_tools(["serpapi"])[0]) agent = ReactCodeAgent(tools=[search_tool]) agent.run("How many more blocks (also denoted as layers) are in BERT base encoder compared to the encoder from the architecture proposed in Attention is All You Need?") ``` ## 在酷炫的 Gradio 界面中展示智能体运行 你可以利用 `gradio.Chatbot` 来展示智能体的思考过程,通过 `stream_to_gradio`,下面是一个示例: ```py import gradio as gr from transformers import ( load_tool, ReactCodeAgent, HfApiEngine, stream_to_gradio, ) # Import tool from Hub image_generation_tool = load_tool("m-ric/text-to-image") llm_engine = HfApiEngine("meta-llama/Meta-Llama-3-70B-Instruct") # Initialize the agent with the image generation tool agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine) def interact_with_agent(task): messages = [] messages.append(gr.ChatMessage(role="user", content=task)) yield messages for msg in stream_to_gradio(agent, task): messages.append(msg) yield messages + [ gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!") ] yield messages with gr.Blocks() as demo: text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.") submit = gr.Button("Run illustrator agent!") chatbot = gr.Chatbot( label="Agent", type="messages", avatar_images=( None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png", ), ) submit.click(interact_with_agent, [text_input], [chatbot]) if __name__ == "__main__": demo.launch() ```