# SAM ## Overview SAM (Segment Anything Model) was proposed in [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. The model can be used to predict segmentation masks of any object of interest given an input image. ![example image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-output.png) The abstract from the paper is the following: *We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at [https://segment-anything.com](https://segment-anything.com) to foster research into foundation models for computer vision.* Tips: - The model predicts binary masks that states the presence or not of the object of interest given an image. - The model predicts much better results if input 2D points and/or input bounding boxes are provided - You can prompt multiple points for the same image, and predict a single mask. - Fine-tuning the model is not supported yet - According to the paper, textual input should be also supported. However, at this time of writing this seems to be not supported according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844). This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/facebookresearch/segment-anything). Below is an example on how to run mask generation given an image and a 2D point: ```python import torch from PIL import Image import requests from transformers import SamModel, SamProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device) processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") input_points = [[[450, 600]]] # 2D location of a window in the image inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) scores = outputs.iou_scores ``` You can also process your own masks alongside the input images in the processor to be passed to the model. ```python import torch from PIL import Image import requests from transformers import SamModel, SamProcessor device = "cuda" if torch.cuda.is_available() else "cpu" model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device) processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") mask_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" segmentation_map = Image.open(requests.get(mask_url, stream=True).raw).convert("1") input_points = [[[450, 600]]] # 2D location of a window in the image inputs = processor(raw_image, input_points=input_points, segmentation_maps=segmentation_map, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) scores = outputs.iou_scores ``` ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SAM. - [Demo notebook](https://github.com/huggingface/notebooks/blob/main/examples/segment_anything.ipynb) for using the model. - [Demo notebook](https://github.com/huggingface/notebooks/blob/main/examples/automatic_mask_generation.ipynb) for using the automatic mask generation pipeline. - [Demo notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SAM/Run_inference_with_MedSAM_using_HuggingFace_Transformers.ipynb) for inference with MedSAM, a fine-tuned version of SAM on the medical domain. 🌎 - [Demo notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SAM/Fine_tune_SAM_(segment_anything)_on_a_custom_dataset.ipynb) for fine-tuning the model on custom data. 🌎 ## SlimSAM SlimSAM, a pruned version of SAM, was proposed in [0.1% Data Makes Segment Anything Slim](https://arxiv.org/abs/2312.05284) by Zigeng Chen et al. SlimSAM reduces the size of the SAM models considerably while maintaining the same performance. Checkpoints can be found on the [hub](https://huggingface.co/models?other=slimsam), and they can be used as a drop-in replacement of SAM. ## Grounded SAM One can combine [Grounding DINO](grounding-dino) with SAM for text-based mask generation as introduced in [Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks](https://arxiv.org/abs/2401.14159). You can refer to this [demo notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb) 🌍 for details. drawing Grounded SAM overview. Taken from the original repository. ## SamConfig [[autodoc]] SamConfig ## SamVisionConfig [[autodoc]] SamVisionConfig ## SamMaskDecoderConfig [[autodoc]] SamMaskDecoderConfig ## SamPromptEncoderConfig [[autodoc]] SamPromptEncoderConfig ## SamProcessor [[autodoc]] SamProcessor ## SamImageProcessor [[autodoc]] SamImageProcessor ## SamModel [[autodoc]] SamModel - forward ## TFSamModel [[autodoc]] TFSamModel - call