# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import datasets import numpy as np from huggingface_hub import AudioClassificationOutputElement from transformers import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, is_torch_available, ) from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( compare_pipeline_output_to_hub_spec, is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class AudioClassificationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING tf_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _dataset = None @classmethod def _load_dataset(cls): # Lazy loading of the dataset. Because it is a class method, it will only be loaded once per pytest process. if cls._dataset is None: cls._dataset = datasets.load_dataset( "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) def get_test_pipeline( self, model, tokenizer=None, image_processor=None, feature_extractor=None, processor=None, torch_dtype="float32", ): audio_classifier = AudioClassificationPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor, processor=processor, torch_dtype=torch_dtype, ) # test with a raw waveform audio = np.zeros((34000,)) audio2 = np.zeros((14000,)) return audio_classifier, [audio2, audio] def run_pipeline_test(self, audio_classifier, examples): audio2, audio = examples output = audio_classifier(audio) # by default a model is initialized with num_labels=2 self.assertEqual( output, [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ) output = audio_classifier(audio, top_k=1) self.assertEqual( output, [ {"score": ANY(float), "label": ANY(str)}, ], ) self.run_torchaudio(audio_classifier) for single_output in output: compare_pipeline_output_to_hub_spec(single_output, AudioClassificationOutputElement) @require_torchaudio def run_torchaudio(self, audio_classifier): self._load_dataset() # test with a local file audio = self._dataset[0]["audio"]["array"] output = audio_classifier(audio) self.assertEqual( output, [ {"score": ANY(float), "label": ANY(str)}, {"score": ANY(float), "label": ANY(str)}, ], ) @require_torch def test_small_model_pt(self): model = "anton-l/wav2vec2-random-tiny-classifier" audio_classifier = pipeline("audio-classification", model=model) audio = np.ones((8000,)) output = audio_classifier(audio, top_k=4) EXPECTED_OUTPUT = [ {"score": 0.0842, "label": "no"}, {"score": 0.0838, "label": "up"}, {"score": 0.0837, "label": "go"}, {"score": 0.0834, "label": "right"}, ] EXPECTED_OUTPUT_PT_2 = [ {"score": 0.0845, "label": "stop"}, {"score": 0.0844, "label": "on"}, {"score": 0.0841, "label": "right"}, {"score": 0.0834, "label": "left"}, ] self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) audio_dict = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} output = audio_classifier(audio_dict, top_k=4) self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) @require_torch def test_small_model_pt_fp16(self): model = "anton-l/wav2vec2-random-tiny-classifier" audio_classifier = pipeline("audio-classification", model=model, torch_dtype=torch.float16) audio = np.ones((8000,)) output = audio_classifier(audio, top_k=4) # Expected outputs are collected running the test on torch 2.6 in few scenarios. # Running on CUDA T4/A100 and on XPU PVC (note: using stock torch xpu, NOT using IPEX): EXPECTED_OUTPUT = [ {"score": 0.0833, "label": "go"}, {"score": 0.0833, "label": "off"}, {"score": 0.0833, "label": "stop"}, {"score": 0.0833, "label": "on"}, ] # Running on CPU: EXPECTED_OUTPUT_PT_2 = [ {"score": 0.0839, "label": "no"}, {"score": 0.0837, "label": "go"}, {"score": 0.0836, "label": "yes"}, {"score": 0.0835, "label": "right"}, ] self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) audio_dict = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} output = audio_classifier(audio_dict, top_k=4) self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) @require_torch @slow def test_large_model_pt(self): model = "superb/wav2vec2-base-superb-ks" audio_classifier = pipeline("audio-classification", model=model) dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test", trust_remote_code=True) audio = np.array(dataset[3]["speech"], dtype=np.float32) output = audio_classifier(audio, top_k=4) self.assertEqual( nested_simplify(output, decimals=3), [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ], ) @require_tf @unittest.skip(reason="Audio classification is not implemented for TF") def test_small_model_tf(self): pass @require_torch @slow def test_top_k_none_returns_all_labels(self): model_name = "superb/wav2vec2-base-superb-ks" # model with more than 5 labels classification_pipeline = pipeline( "audio-classification", model=model_name, top_k=None, ) # Create dummy input sampling_rate = 16000 signal = np.zeros((sampling_rate,), dtype=np.float32) result = classification_pipeline(signal) num_labels = classification_pipeline.model.config.num_labels self.assertEqual(len(result), num_labels, "Should return all labels when top_k is None") @require_torch @slow def test_top_k_none_with_few_labels(self): model_name = "superb/hubert-base-superb-er" # model with fewer labels classification_pipeline = pipeline( "audio-classification", model=model_name, top_k=None, ) # Create dummy input sampling_rate = 16000 signal = np.zeros((sampling_rate,), dtype=np.float32) result = classification_pipeline(signal) num_labels = classification_pipeline.model.config.num_labels self.assertEqual(len(result), num_labels, "Should handle models with fewer labels correctly") @require_torch @slow def test_top_k_greater_than_labels(self): model_name = "superb/hubert-base-superb-er" classification_pipeline = pipeline( "audio-classification", model=model_name, top_k=100, # intentionally large number ) # Create dummy input sampling_rate = 16000 signal = np.zeros((sampling_rate,), dtype=np.float32) result = classification_pipeline(signal) num_labels = classification_pipeline.model.config.num_labels self.assertEqual(len(result), num_labels, "Should cap top_k to number of labels")