# coding=utf-8 # Copyright 2020 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device if is_torch_available(): import torch from transformers import BartForConditionalGeneration, BartTokenizer, top_k_top_p_filtering from transformers.generation_beam_search import BeamSearchScorer from transformers.generation_logits_process import ( HammingDiversityLogitsProcessor, LogitsProcessorList, MinLengthLogitsProcessor, NoBadWordsLogitsProcessor, NoRepeatNGramLogitsProcessor, RepetitionPenaltyLogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, ) class GenerationTesterMixin: model_tester = None all_generative_model_classes = () def _get_input_ids_and_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict["input_ids"] attention_mask = torch.ones_like(input_ids) # cut to half length & take max batch_size 3 max_batch_size = 2 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:max_batch_size, :sequence_length] attention_mask = attention_mask[:max_batch_size, :sequence_length] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` config.pad_token_id = config.eos_token_id return config, input_ids, attention_mask, max_length @staticmethod def _get_logits_processor_and_kwargs(input_length, eos_token_id, diversity_penalty=None): process_kwargs = { "min_length": input_length + 1, "bad_words_ids": [[1, 0]], "no_repeat_ngram_size": 2, "repetition_penalty": 1.2, } logits_processor = LogitsProcessorList( ( [ HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2), ] if diversity_penalty is not None else [] ) + ( [ MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id), ] if eos_token_id is not None else [] ) + [ NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id), NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]), RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]), ] ) return process_kwargs, logits_processor @staticmethod def _get_warper_and_kwargs(num_beams): warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7} logits_warper = LogitsProcessorList( [ TemperatureLogitsWarper(warp_kwargs["temperature"]), TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)), TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)), ] ) return warp_kwargs, logits_warper @staticmethod def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": 2, "num_return_sequences": num_return_sequences, } beam_scorer = BeamSearchScorer( batch_size=batch_size, max_length=max_length, num_beams=beam_kwargs["num_beams"], device=torch_device, length_penalty=beam_kwargs["length_penalty"], do_early_stopping=beam_kwargs["early_stopping"], num_beam_hyps_to_keep=num_return_sequences, ) return beam_kwargs, beam_scorer @staticmethod def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": 2, "num_return_sequences": num_return_sequences, "num_beam_groups": 2, # one beam per group "diversity_penalty": 2.0, } beam_scorer = BeamSearchScorer( batch_size=batch_size, max_length=max_length, num_beams=beam_kwargs["num_beams"], device=torch_device, length_penalty=beam_kwargs["length_penalty"], do_early_stopping=beam_kwargs["early_stopping"], num_beam_hyps_to_keep=num_return_sequences, num_beam_groups=beam_kwargs["num_beam_groups"], ) return beam_kwargs, beam_scorer @staticmethod def _get_encoder_outputs(model, input_ids, attention_mask, num_interleave=1): encoder = model.get_encoder() encoder_outputs = encoder(input_ids, attention_mask=attention_mask) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id() attention_mask = None return encoder_outputs, input_ids, attention_mask def test_greedy_generate(self): for model_class in self.all_generative_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( input_ids.shape[-1], config.eos_token_id ) model = model_class(config).to(torch_device) model.eval() # check `generate()` and `greedy_search()` are equal kwargs = {} if model.config.is_encoder_decoder: max_length = 4 output_ids_generate = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, num_beams=1, max_length=max_length, **logits_process_kwargs, ) if model.config.is_encoder_decoder: encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( model, input_ids, attention_mask ) kwargs["encoder_outputs"] = encoder_outputs with torch.no_grad(): output_ids_greedy = model.greedy_search( input_ids, max_length=max_length, attention_mask=attention_mask, logits_processor=logits_processor, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_greedy.tolist()) def test_sample_generate(self): for model_class in self.all_generative_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( input_ids.shape[-1], config.eos_token_id ) logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1) model = model_class(config).to(torch_device) model.eval() # check `generate()` and `sample()` are equal if model.config.is_encoder_decoder: max_length = 4 torch.manual_seed(0) output_ids_generate = model.generate( input_ids, do_sample=True, num_beams=1, max_length=max_length, attention_mask=attention_mask, **logits_warper_kwargs, **process_kwargs, ) torch.manual_seed(0) kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs( model, input_ids, attention_mask ) kwargs["encoder_outputs"] = encoder_outputs else: attention_mask_clone = attention_mask input_ids_clone = input_ids with torch.no_grad(): output_ids_sample = model.sample( input_ids_clone, attention_mask=attention_mask_clone, max_length=max_length, logits_processor=logits_processor, logits_warper=logits_warper, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_sample.tolist()) # check `generate()` and `sample()` yield equal results for `num_return_sequences` num_return_sequences = 3 if model.config.is_encoder_decoder: max_length = 4 torch.manual_seed(0) output_ids_generate = model.generate( input_ids, do_sample=True, num_beams=1, max_length=max_length, num_return_sequences=num_return_sequences, attention_mask=attention_mask, **logits_warper_kwargs, **process_kwargs, ) torch.manual_seed(0) kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs( model, input_ids, attention_mask, num_interleave=num_return_sequences ) kwargs["encoder_outputs"] = encoder_outputs input_ids_clone = input_ids_clone.repeat_interleave(num_return_sequences, dim=0) else: attention_mask_clone = attention_mask.repeat_interleave(num_return_sequences, dim=0) input_ids_clone = input_ids.repeat_interleave(num_return_sequences, dim=0) with torch.no_grad(): output_ids_sample = model.sample( input_ids_clone, attention_mask=attention_mask_clone, max_length=max_length, logits_processor=logits_processor, logits_warper=logits_warper, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_sample.tolist()) def test_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( input_ids.shape[-1], config.eos_token_id ) model = model_class(config).to(torch_device) model.eval() # check `generate()` and `beam_search()` are equal if model.config.is_encoder_decoder: max_length = 4 beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length) output_ids_generate = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, max_length=max_length, **beam_kwargs, **logits_process_kwargs, ) # beam_search does not automatically interleave `batch_size` dim for `num_beams` kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs( model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams ) kwargs["encoder_outputs"] = encoder_outputs input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0) else: attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0) input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0) with torch.no_grad(): output_ids_beam_search = model.beam_search( input_ids_clone, beam_scorer, max_length=max_length, attention_mask=attention_mask_clone, logits_processor=logits_processor, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_search.tolist()) # check `generate()` and `beam_search()` are equal for `num_return_sequences` num_return_sequences = 2 if model.config.is_encoder_decoder: max_length = 4 beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs( input_ids.shape[0], max_length, num_return_sequences=num_return_sequences ) output_ids_generate = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, max_length=max_length, **beam_kwargs, **logits_process_kwargs, ) # beam_search does not automatically interleave `batch_size` dim for `num_beams` kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs( model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams ) kwargs["encoder_outputs"] = encoder_outputs input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0) else: attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0) input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0) with torch.no_grad(): output_ids_beam_search = model.beam_search( input_ids_clone, beam_scorer, max_length=max_length, attention_mask=attention_mask_clone, logits_processor=logits_processor, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_search.tolist()) def test_beam_sample_generate(self): for model_class in self.all_generative_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() print("Return dict", config.return_dict) logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1) model = model_class(config).to(torch_device) model.eval() # check `generate()` and `beam_search()` are equal # change `num_return_sequences = 2` but not for `beam_scorer` num_return_sequences = 2 if model.config.is_encoder_decoder: max_length = 4 beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs( input_ids.shape[0] * num_return_sequences, max_length ) beam_kwargs["num_return_sequences"] = num_return_sequences torch.manual_seed(0) output_ids_generate = model.generate( input_ids, attention_mask=attention_mask, do_sample=True, max_length=max_length, **beam_kwargs, **logits_warper_kwargs, ) # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences` kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams * num_return_sequences ) kwargs["encoder_outputs"] = encoder_outputs else: attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0) torch.manual_seed(0) with torch.no_grad(): output_ids_beam_sample = model.beam_sample( input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0), beam_scorer, max_length=max_length, attention_mask=attention_mask, logits_warper=logits_warper, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_sample.tolist()) def test_generate_without_input_ids(self): config, _, _, max_length = self._get_input_ids_and_config() # if no bos token id => cannot generate from None if config.bos_token_id is None: return for model_class in self.all_generative_model_classes: model = model_class(config).to(torch_device) model.eval() output_ids_generate = model.generate( do_sample=False, max_length=max_length, ) self.assertIsNotNone(output_ids_generate) def test_group_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( input_ids.shape[-1], config.eos_token_id, diversity_penalty=2.0 ) model = model_class(config).to(torch_device) model.eval() # check `generate()` and `group_beam_search()` are equal if model.config.is_encoder_decoder: max_length = 4 beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length) output_ids_generate = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, max_length=max_length, **beam_kwargs, **logits_process_kwargs, ) # group_beam_search does not automatically interleave `batch_size` dim for `num_beams` kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs( model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams ) kwargs["encoder_outputs"] = encoder_outputs input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0) else: attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0) input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0) with torch.no_grad(): output_ids_group_beam_search = model.group_beam_search( input_ids_clone, beam_scorer, max_length=max_length, attention_mask=attention_mask_clone, logits_processor=logits_processor, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_group_beam_search.tolist()) # check `generate()` and `group_beam_search()` are equal for `num_return_sequences` num_return_sequences = 2 if model.config.is_encoder_decoder: max_length = 4 beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs( input_ids.shape[0], max_length, num_return_sequences=num_return_sequences ) output_ids_generate = model.generate( input_ids, attention_mask=attention_mask, do_sample=False, max_length=max_length, **beam_kwargs, **logits_process_kwargs, ) # group_beam_search does not automatically interleave `batch_size` dim for `num_beams` kwargs = {} if model.config.is_encoder_decoder: encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs( model, input_ids, attention_mask, num_interleave=beam_scorer.num_beams ) kwargs["encoder_outputs"] = encoder_outputs input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0) else: attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0) input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0) with torch.no_grad(): output_ids_beam_search = model.group_beam_search( input_ids_clone, beam_scorer, max_length=max_length, attention_mask=attention_mask_clone, logits_processor=logits_processor, **kwargs, ) self.assertListEqual(output_ids_generate.tolist(), output_ids_beam_search.tolist()) @require_torch class UtilsFunctionsTest(unittest.TestCase): # tests whether the top_k_top_p function behaves as expected def test_top_k_top_p_filtering(self): logits = torch.tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 4 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 4 highest values <= 0.6 ], dtype=torch.float, device=torch_device, ) non_inf_expected_idx = torch.tensor( [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]], dtype=torch.long, device=torch_device, ) # expected non filtered idx as noted above non_inf_expected_output = torch.tensor( [ 8.2221, 8.4321, 7.4402, 9.3845, 6.2712, 8.8275, 7.3858, 9.6770, ], # expected non filtered values as noted above dtype=torch.float, device=torch_device, ) output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4) non_inf_output = output[output != -float("inf")].to(device=torch_device) non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device) self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12)) self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx))) @require_torch class GenerationIntegrationTests(unittest.TestCase): @slow def test_diverse_beam_search(self): article = """Justin Timberlake and Jessica Biel, welcome to parenthood. The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People. "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports. The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both.""" bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) outputs = bart_model.generate( input_ids, num_beams=4, num_return_sequences=2, num_beam_groups=4, diversity_penalty=2.0 ) generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle name, as well as his father's first. It is the first baby for both of them.", "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the first child for both. The couple announced the pregnancy in January. The name Silas is the middle name of Timberlake's maternal grandfather. It's also his own middle name.", ], )