# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from numpy import ndarray from transformers import BertTokenizerFast, TensorType, is_flax_available, is_torch_available from transformers.testing_utils import require_flax, require_torch if is_flax_available(): import os os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8 import jax from transformers.models.bert.modeling_flax_bert import FlaxBertModel if is_torch_available(): import torch from transformers.models.bert.modeling_bert import BertModel @require_flax @require_torch class FlaxBertModelTest(unittest.TestCase): def assert_almost_equals(self, a: ndarray, b: ndarray, tol: float): diff = (a - b).sum() self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol})") def test_from_pytorch(self): with torch.no_grad(): with self.subTest("bert-base-cased"): tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased") fx_model = FlaxBertModel.from_pretrained("bert-base-cased") pt_model = BertModel.from_pretrained("bert-base-cased") # Check for simple input pt_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.PYTORCH) fx_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.JAX) pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**fx_inputs) self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-3) def test_multiple_sequences(self): tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased") model = FlaxBertModel.from_pretrained("bert-base-cased") sequences = ["this is an example sentence", "this is another", "and a third one"] encodings = tokenizer(sequences, return_tensors=TensorType.JAX, padding=True, truncation=True) @jax.jit def model_jitted(input_ids, attention_mask=None, token_type_ids=None): return model(input_ids, attention_mask, token_type_ids) with self.subTest("JIT Disabled"): with jax.disable_jit(): tokens, pooled = model_jitted(**encodings) self.assertEqual(tokens.shape, (3, 7, 768)) self.assertEqual(pooled.shape, (3, 768)) with self.subTest("JIT Enabled"): jitted_tokens, jitted_pooled = model_jitted(**encodings) self.assertEqual(jitted_tokens.shape, (3, 7, 768)) self.assertEqual(jitted_pooled.shape, (3, 768))