# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from dataclasses import dataclass import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import ZoeDepthImageProcessor if is_torchvision_available(): from transformers import ZoeDepthImageProcessorFast @dataclass class ZoeDepthDepthOutputProxy: predicted_depth: torch.FloatTensor = None class ZoeDepthImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, ensure_multiple_of=32, keep_aspect_ratio=False, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_pad=True, ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.ensure_multiple_of = ensure_multiple_of self.keep_aspect_ratio = keep_aspect_ratio self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_pad = do_pad def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "ensure_multiple_of": self.ensure_multiple_of, "keep_aspect_ratio": self.keep_aspect_ratio, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def expected_output_image_shape(self, images): return self.num_channels, self.ensure_multiple_of, self.ensure_multiple_of def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) def prepare_depth_outputs(self): depth_tensors = prepare_image_inputs( batch_size=self.batch_size, num_channels=1, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=True, torchify=True, ) depth_tensors = [depth_tensor.squeeze(0) for depth_tensor in depth_tensors] stacked_depth_tensors = torch.stack(depth_tensors, dim=0) return ZoeDepthDepthOutputProxy(predicted_depth=stacked_depth_tensors) @require_torch @require_vision class ZoeDepthImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ZoeDepthImageProcessor if is_vision_available() else None fast_image_processing_class = ZoeDepthImageProcessorFast if is_torchvision_available() else None def setUp(self): super().setUp() self.image_processor_tester = ZoeDepthImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "ensure_multiple_of")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_pad")) def test_image_processor_from_dict_with_kwargs(self): for image_processing_class in self.image_processor_list: image_processor = image_processing_class(**self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) for image_processing_class in self.image_processor_list: modified_dict = self.image_processor_dict modified_dict["size"] = 42 image_processor = image_processing_class(**modified_dict) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_ensure_multiple_of(self): # Test variable by turning off all other variables which affect the size, size which is not multiple of 32 image = np.zeros((489, 640, 3)) size = {"height": 380, "width": 513} multiple = 32 for image_processor_class in self.image_processor_list: image_processor = image_processor_class( do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False ) pixel_values = image_processor(image, return_tensors="pt").pixel_values self.assertEqual(list(pixel_values.shape), [1, 3, 384, 512]) self.assertTrue(pixel_values.shape[2] % multiple == 0) self.assertTrue(pixel_values.shape[3] % multiple == 0) # Test variable by turning off all other variables which affect the size, size which is already multiple of 32 image = np.zeros((511, 511, 3)) height, width = 512, 512 size = {"height": height, "width": width} multiple = 32 for image_processor_class in self.image_processor_list: image_processor = image_processor_class( do_pad=False, ensure_multiple_of=multiple, size=size, keep_aspect_ratio=False ) pixel_values = image_processor(image, return_tensors="pt").pixel_values self.assertEqual(list(pixel_values.shape), [1, 3, height, width]) self.assertTrue(pixel_values.shape[2] % multiple == 0) self.assertTrue(pixel_values.shape[3] % multiple == 0) def test_keep_aspect_ratio(self): # Test `keep_aspect_ratio=True` by turning off all other variables which affect the size height, width = 489, 640 image = np.zeros((height, width, 3)) size = {"height": 512, "width": 512} for image_processor_class in self.image_processor_list: image_processor = image_processor_class( do_pad=False, keep_aspect_ratio=True, size=size, ensure_multiple_of=1 ) pixel_values = image_processor(image, return_tensors="pt").pixel_values # As can be seen, the image is resized to the maximum size that fits in the specified size self.assertEqual(list(pixel_values.shape), [1, 3, 512, 670]) # Test `keep_aspect_ratio=False` by turning off all other variables which affect the size for image_processor_class in self.image_processor_list: image_processor = image_processor_class( do_pad=False, keep_aspect_ratio=False, size=size, ensure_multiple_of=1 ) pixel_values = image_processor(image, return_tensors="pt").pixel_values # As can be seen, the size is respected self.assertEqual(list(pixel_values.shape), [1, 3, size["height"], size["width"]]) # Test `keep_aspect_ratio=True` with `ensure_multiple_of` set image = np.zeros((489, 640, 3)) size = {"height": 511, "width": 511} multiple = 32 for image_processor_class in self.image_processor_list: image_processor = image_processor_class(size=size, keep_aspect_ratio=True, ensure_multiple_of=multiple) pixel_values = image_processor(image, return_tensors="pt").pixel_values self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672]) self.assertTrue(pixel_values.shape[2] % multiple == 0) self.assertTrue(pixel_values.shape[3] % multiple == 0) # extend this test to check if removal of padding works fine! def test_post_processing_equivalence(self): outputs = self.image_processor_tester.prepare_depth_outputs() image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict) image_processor_slow = self.image_processing_class(**self.image_processor_dict) source_sizes = [outputs.predicted_depth.shape[1:]] * self.image_processor_tester.batch_size target_sizes = [ torch.Size([outputs.predicted_depth.shape[1] // 2, *(outputs.predicted_depth.shape[2:])]) ] * self.image_processor_tester.batch_size processed_fast = image_processor_fast.post_process_depth_estimation( outputs, source_sizes=source_sizes, target_sizes=target_sizes, ) processed_slow = image_processor_slow.post_process_depth_estimation( outputs, source_sizes=source_sizes, target_sizes=target_sizes, ) for pred_fast, pred_slow in zip(processed_fast, processed_slow): depth_fast = pred_fast["predicted_depth"] depth_slow = pred_slow["predicted_depth"] torch.testing.assert_close(depth_fast, depth_slow, atol=1e-1, rtol=1e-3) self.assertLessEqual(torch.mean(torch.abs(depth_fast.float() - depth_slow.float())).item(), 5e-3)