# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch V-JEPA2 model.""" import unittest import numpy as np from transformers import VJEPA2Config from transformers.testing_utils import ( is_flaky, require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin from ...test_video_processing_common import ( prepare_video_inputs, ) if is_torch_available(): import torch from torch import nn from transformers import VJEPA2ForVideoClassification, VJEPA2Model if is_vision_available(): from PIL import Image from transformers import AutoVideoProcessor VJEPA_HF_MODEL = "facebook/vjepa2-vitl-fpc64-256" class VJEPA2ModelTester: def __init__( self, parent, batch_size=2, image_size=16, patch_size=16, num_channels=3, hidden_size=32, num_hidden_layers=4, num_attention_heads=2, num_frames=2, mlp_ratio=1, pred_hidden_size=32, pred_num_attention_heads=2, pred_num_hidden_layers=2, pred_num_mask_tokens=10, is_training=False, attn_implementation="sdpa", mask_ratio=0.5, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_frames = num_frames self.mlp_ratio = mlp_ratio self.pred_hidden_size = pred_hidden_size self.pred_num_attention_heads = pred_num_attention_heads self.pred_num_hidden_layers = pred_num_hidden_layers self.pred_num_mask_tokens = pred_num_mask_tokens self.attn_implementation = attn_implementation self.is_training = is_training self.mask_ratio = mask_ratio num_patches = ((image_size // patch_size) ** 2) * (num_frames // 2) self.seq_length = num_patches self.num_masks = int(self.mask_ratio * self.seq_length) self.mask_length = num_patches def prepare_config_and_inputs(self): pixel_values_videos = floats_tensor( [ self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size, ] ) config = self.get_config() return config, pixel_values_videos def get_config(self): return VJEPA2Config( crop_size=self.image_size, frames_per_clip=self.num_frames, hidden_size=self.hidden_size, num_attention_heads=self.num_attention_heads, num_hidden_layers=self.num_hidden_layers, mlp_ratio=self.mlp_ratio, pred_hidden_size=self.pred_hidden_size, pred_num_attention_heads=self.pred_num_attention_heads, pred_num_hidden_layers=self.pred_num_hidden_layers, pred_num_mask_tokens=self.pred_num_mask_tokens, ) def create_and_check_model(self, config, pixel_values_videos): model = VJEPA2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values_videos) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values_videos, ) = config_and_inputs inputs_dict = {"pixel_values_videos": pixel_values_videos} return config, inputs_dict @require_torch class VJEPA2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as VJEPA2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ test_torch_exportable = True all_model_classes = (VJEPA2Model, VJEPA2ForVideoClassification) if is_torch_available() else () fx_compatible = True pipeline_model_mapping = {} test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = VJEPA2ModelTester(self) self.config_tester = ConfigTester(self, config_class=VJEPA2Config, has_text_modality=False, hidden_size=37) @is_flaky(max_attempts=3, description="`torch.nn.init.trunc_normal_` is flaky.") def test_initialization(self): super().test_initialization() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="VJEPA2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="VJEPA2 does not support feedforward chunking yet") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = VJEPA2Model.from_pretrained(VJEPA_HF_MODEL) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image def prepare_random_video(image_size=256): videos = prepare_video_inputs( batch_size=1, num_frames=16, num_channels=3, min_resolution=image_size, max_resolution=image_size, equal_resolution=True, return_tensors="torch", ) return videos @require_torch @require_vision class VJEPA2ModelIntegrationTest(unittest.TestCase): @cached_property def default_video_processor(self): return AutoVideoProcessor.from_pretrained(VJEPA_HF_MODEL) if is_vision_available() else None @slow def test_inference_image(self): model = VJEPA2Model.from_pretrained(VJEPA_HF_MODEL).to(torch_device) video_processor = self.default_video_processor image = prepare_img() inputs = video_processor(torch.Tensor(np.array(image)), return_tensors="pt").to(torch_device) pixel_values_videos = inputs.pixel_values_videos pixel_values_videos = pixel_values_videos.repeat(1, model.config.frames_per_clip, 1, 1, 1) # forward pass with torch.no_grad(): outputs = model(pixel_values_videos) # verify the last hidden states expected_shape = torch.Size((1, 8192, 1024)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-0.0061, -1.8365, 2.7343], [-2.5938, -2.7181, -0.1663], [-1.7993, -2.2430, -1.1388]], device=torch_device, ) torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=8e-2, atol=8e-2) @slow def test_inference_video(self): model = VJEPA2Model.from_pretrained(VJEPA_HF_MODEL).to(torch_device) video_processor = self.default_video_processor video = prepare_random_video() inputs = video_processor(video, return_tensors="pt").to(torch_device) pixel_values_videos = inputs.pixel_values_videos # forward pass with torch.no_grad(): outputs = model(pixel_values_videos) # verify the last hidden states expected_shape = torch.Size((1, 2048, 1024)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) @slow def test_predictor_outputs(self): model = VJEPA2Model.from_pretrained(VJEPA_HF_MODEL).to(torch_device) video_processor = self.default_video_processor video = prepare_random_video() inputs = video_processor(video, return_tensors="pt").to(torch_device) pixel_values_videos = inputs.pixel_values_videos # forward pass with torch.no_grad(): outputs = model(pixel_values_videos) # verify the last hidden states expected_shape = torch.Size((1, 2048, 1024)) self.assertEqual(outputs.predictor_output.last_hidden_state.shape, expected_shape) @slow def test_predictor_full_mask(self): model = VJEPA2Model.from_pretrained(VJEPA_HF_MODEL).to(torch_device) video_processor = self.default_video_processor video = prepare_random_video() inputs = video_processor(video, return_tensors="pt").to(torch_device) pixel_values_videos = inputs.pixel_values_videos # forward pass with torch.no_grad(): context_mask = [torch.arange(2048, device=pixel_values_videos.device).unsqueeze(0)] predictor_mask = context_mask outputs = model(pixel_values_videos, context_mask=context_mask, target_mask=predictor_mask) # verify the last hidden states expected_shape = torch.Size((1, 2048, 1024)) self.assertEqual(outputs.predictor_output.last_hidden_state.shape, expected_shape) @slow def test_predictor_partial_mask(self): model = VJEPA2Model.from_pretrained(VJEPA_HF_MODEL).to(torch_device) video_processor = self.default_video_processor video = prepare_random_video() inputs = video_processor(video, return_tensors="pt").to(torch_device) pixel_values_videos = inputs.pixel_values_videos num_patches = 2048 num_masks = 100 # forward pass with torch.no_grad(): pos_ids = torch.arange(num_patches, device=pixel_values_videos.device) context_mask = [pos_ids[0 : num_patches - num_masks].unsqueeze(0)] predictor_mask = [pos_ids[num_patches - num_masks :].unsqueeze(0)] outputs = model(pixel_values_videos, context_mask=context_mask, target_mask=predictor_mask) # verify the last hidden states expected_shape = torch.Size((1, num_masks, 1024)) self.assertEqual(outputs.predictor_output.last_hidden_state.shape, expected_shape) @slow def test_video_classification(self): checkpoint = "facebook/vjepa2-vitl-fpc16-256-ssv2" model = VJEPA2ForVideoClassification.from_pretrained(checkpoint).to(torch_device) video_processor = AutoVideoProcessor.from_pretrained(checkpoint) sample_video = np.ones((16, 3, 256, 256)) inputs = video_processor(sample_video, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) self.assertEqual(outputs.logits.shape, (1, 174)) expected_logits = torch.tensor([0.8814, -0.1195, -0.6389], device=torch_device) resulted_logits = outputs.logits[0, 100:103] torch.testing.assert_close(resulted_logits, expected_logits, rtol=1e-2, atol=1e-2)