# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch VitMatte model.""" import unittest from huggingface_hub import hf_hub_download from transformers import VitMatteConfig from transformers.testing_utils import ( require_timm, require_torch, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available from transformers.utils.import_utils import get_torch_major_and_minor_version from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import VitDetConfig, VitMatteForImageMatting if is_vision_available(): from PIL import Image from transformers import VitMatteImageProcessor class VitMatteModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=16, num_channels=4, is_training=True, use_labels=False, hidden_size=2, num_hidden_layers=2, num_attention_heads=2, hidden_act="gelu", type_sequence_label_size=10, initializer_range=0.02, scope=None, out_features=["stage1"], fusion_hidden_sizes=[128, 64, 32, 16], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_features = out_features self.fusion_hidden_sizes = fusion_hidden_sizes self.seq_length = (self.image_size // self.patch_size) ** 2 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: raise NotImplementedError("Training is not yet supported") config = self.get_config() return config, pixel_values, labels def get_backbone_config(self): return VitDetConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_size=self.hidden_size, is_training=self.is_training, hidden_act=self.hidden_act, out_features=self.out_features, ) def get_config(self): return VitMatteConfig( backbone_config=self.get_backbone_config(), backbone=None, hidden_size=self.hidden_size, fusion_hidden_sizes=self.fusion_hidden_sizes, ) def create_and_check_model(self, config, pixel_values, labels): model = VitMatteForImageMatting(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.alphas.shape, (self.batch_size, 1, self.image_size, self.image_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class VitMatteModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as VitMatte does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (VitMatteForImageMatting,) if is_torch_available() else () pipeline_model_mapping = {} fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torch_exportable = True test_torch_exportable_strictly = not get_torch_major_and_minor_version() == "2.7" def setUp(self): self.model_tester = VitMatteModelTester(self) self.config_tester = ConfigTester( self, config_class=VitMatteConfig, has_text_modality=False, hidden_size=37, common_properties=["hidden_size"], ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="VitMatte does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Training is not yet supported") def test_training(self): pass @unittest.skip(reason="Training is not yet supported") def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="ViTMatte does not support input and output embeddings") def test_model_get_set_embeddings(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "hustvl/vitmatte-small-composition-1k" model = VitMatteForImageMatting.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="ViTMatte does not support retaining gradient on attention logits") def test_retain_grad_hidden_states_attentions(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [2, 2], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True print("Hello we're here") check_hidden_states_output(inputs_dict, config, model_class) @require_timm def test_backbone_selection(self): def _validate_backbone_init(): for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() if model.__class__.__name__ == "VitMatteForImageMatting": # Confirm out_indices propagated to backbone self.assertEqual(len(model.backbone.out_indices), 2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_pretrained_backbone = True config.backbone_config = None config.backbone_kwargs = {"out_indices": [-2, -1]} # Force load_backbone path config.is_hybrid = False # Load a timm backbone config.backbone = "resnet18" config.use_timm_backbone = True _validate_backbone_init() # Load a HF backbone config.backbone = "facebook/dinov2-small" config.use_timm_backbone = False _validate_backbone_init() @require_torch class VitMatteModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k") model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k").to(torch_device) filepath = hf_hub_download( repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset" ) image = Image.open(filepath).convert("RGB") filepath = hf_hub_download( repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset" ) trimap = Image.open(filepath).convert("L") # prepare image + trimap for the model inputs = processor(images=image, trimaps=trimap, return_tensors="pt").to(torch_device) with torch.no_grad(): alphas = model(**inputs).alphas expected_shape = torch.Size((1, 1, 640, 960)) self.assertEqual(alphas.shape, expected_shape) expected_slice = torch.tensor( [[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]], device=torch_device ) torch.testing.assert_close(alphas[0, 0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)