# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch ViTMAE model.""" import math import tempfile import unittest import numpy as np from pytest import mark from transformers import ViTMAEConfig from transformers.testing_utils import ( is_flaky, require_flash_attn, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class ViTMAEModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, mask_ratio=0.5, attn_implementation="eager", ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope self.attn_implementation = attn_implementation # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) self.mask_ratio = mask_ratio self.num_masks = int(mask_ratio * self.seq_length) self.mask_length = num_patches def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, decoder_hidden_size=self.hidden_size, decoder_intermediate_size=self.intermediate_size, decoder_num_attention_heads=self.num_attention_heads, decoder_num_hidden_layers=self.num_hidden_layers, attn_implementation=self.attn_implementation, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = ViTMAEForPreTraining(config) model.to(torch_device) model.eval() result = model(pixel_values) num_patches = (self.image_size // self.patch_size) ** 2 expected_num_channels = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) # test greyscale images config.num_channels = 1 model = ViTMAEForPreTraining(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) expected_num_channels = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () pipeline_model_mapping = {"image-feature-extraction": ViTMAEModel} if is_torch_available() else {} test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False test_torch_exportable = True def setUp(self): self.model_tester = ViTMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_determinism(self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass") def test_batching_equivalence(self): pass @slow def test_model_from_pretrained(self): model_name = "google/vit-base-patch16-224" model = ViTMAEModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_flash_attn @require_torch_gpu @mark.flash_attn_test @slow @is_flaky() def test_flash_attn_2_inference_equivalence(self): if not self.has_attentions: self.skipTest(reason="Model architecture does not support attentions") for model_class in self.all_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict = self._prepare_for_class(inputs_dict, model_class) inputs_dict["pixel_values"] = inputs_dict["pixel_values"].to(torch.bfloat16) model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16) model.to(torch_device) # ForPretraining model has random `noise` -> need to set seed # to make the test deterministic torch.manual_seed(12345) outputs = model(**inputs_dict, output_hidden_states=True) torch.manual_seed(12345) outputs_fa = model_fa(**inputs_dict, output_hidden_states=True) logits = ( outputs.hidden_states[-1] if not model.config.is_encoder_decoder else outputs.decoder_hidden_states[-1] ) logits_fa = ( outputs_fa.hidden_states[-1] if not model.config.is_encoder_decoder else outputs_fa.decoder_hidden_states[-1] ) assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) # check with inference + dropout model.train() _ = model_fa(**inputs_dict) @unittest.skip("Not applicable for VideoMAE") def test_flash_attn_2_inference_equivalence_right_padding(self): pass def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): # This is an excepton in the module, it's initialized with xavier_uniform without using initializer_range if name.endswith("patch_embeddings.projection.weight"): continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") @cached_property def default_model(self): return ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device) @slow def test_inference_for_pretraining(self): # make random mask reproducible across the PT and TF model np.random.seed(2) model = self.default_model image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) vit_mae_config = ViTMAEConfig() num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) noise = torch.from_numpy(np.random.uniform(size=(1, num_patches))).to(device=torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs, noise=noise) # verify the logits expected_shape = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice.to(torch_device), rtol=1e-4, atol=1e-4) @slow def test_inference_interpolate_pos_encoding(self): # ViTMAE models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. # make random mask reproducible across the PT and TF model np.random.seed(2) model = self.default_model image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt", do_resize=False).to(torch_device) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) vit_mae_config = ViTMAEConfig() num_patches = (image.height // vit_mae_config.patch_size) * (image.width // vit_mae_config.patch_size) noise = torch.from_numpy(np.random.uniform(size=(1, num_patches))).to(device=torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs, noise=noise, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((1, 1200, 768)) self.assertEqual(outputs.logits.shape, expected_shape) @slow def test_inference_interpolate_pos_encoding_custom_sizes(self): # Ensure custom sizes are correctly handled when interpolating the position embeddings # make random mask reproducible across the PT and TF model np.random.seed(2) model = self.default_model image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt", size={"height": 256, "width": 256}).to( torch_device ) # forward pass with torch.no_grad(): outputs = model( **inputs, interpolate_pos_encoding=True, ) # verify the logits expected_shape = torch.Size((1, 256, 768)) self.assertEqual(outputs.logits.shape, expected_shape)