# Copyright 2023 The Intel Team Authors, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Optional, Union import numpy as np from transformers.image_transforms import PaddingMode from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import TvpImageProcessor class TvpImageProcessingTester: def __init__( self, parent, do_resize: bool = True, size: dict[str, int] = {"longest_edge": 40}, do_center_crop: bool = False, crop_size: Optional[dict[str, int]] = None, do_rescale: bool = False, rescale_factor: Union[int, float] = 1 / 255, do_pad: bool = True, pad_size: dict[str, int] = {"height": 80, "width": 80}, fill: Optional[int] = None, pad_mode: PaddingMode = None, do_normalize: bool = True, image_mean: Optional[Union[float, list[float]]] = [0.48145466, 0.4578275, 0.40821073], image_std: Optional[Union[float, list[float]]] = [0.26862954, 0.26130258, 0.27577711], batch_size=2, min_resolution=40, max_resolution=80, num_channels=3, num_frames=2, ): self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.pad_size = pad_size self.fill = fill self.pad_mode = pad_mode self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.num_frames = num_frames def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "do_center_crop": self.do_center_crop, "do_pad": self.do_pad, "pad_size": self.pad_size, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to TvpImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: return (int(self.pad_size["height"]), int(self.pad_size["width"])) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_video_inputs( batch_size=self.batch_size, num_frames=self.num_frames, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class TvpImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = TvpImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = TvpImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "do_pad")) self.assertTrue(hasattr(image_processing, "pad_size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"longest_edge": 40}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size={"longest_edge": 12}) self.assertEqual(image_processor.size, {"longest_edge": 12}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL videos video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], Image.Image) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_call_numpy_4_channels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing( video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first" ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing( video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first" ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) self.image_processor_tester.num_channels = 3 def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], torch.Tensor) # Test not batched input expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs) encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test batched expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True) encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, expected_height, expected_width, ), )