# Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from PIL import Image from transformers import AutoProcessor, Owlv2ForObjectDetection, Owlv2ImageProcessor if is_torch_available(): import torch class Owlv2ImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], do_convert_rgb=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size if size is not None else {"height": 18, "width": 18} self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class Owlv2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Owlv2ImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = Owlv2ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size={"height": 42, "width": 42} ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) @slow def test_image_processor_integration_test(self): processor = Owlv2ImageProcessor() image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") pixel_values = processor(image, return_tensors="pt").pixel_values mean_value = round(pixel_values.mean().item(), 4) self.assertEqual(mean_value, 0.2353) @slow def test_image_processor_integration_test_resize(self): checkpoint = "google/owlv2-base-patch16-ensemble" processor = AutoProcessor.from_pretrained(checkpoint) model = Owlv2ForObjectDetection.from_pretrained(checkpoint) image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") text = ["cat"] target_size = image.size[::-1] expected_boxes = torch.tensor( [ [341.66656494140625, 23.38756561279297, 642.321044921875, 371.3482971191406], [6.753320693969727, 51.96149826049805, 326.61810302734375, 473.12982177734375], ] ) # single image inputs = processor(text=[text], images=[image], return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) results = processor.post_process_object_detection(outputs, threshold=0.2, target_sizes=[target_size])[0] boxes = results["boxes"] self.assertTrue( torch.allclose(boxes, expected_boxes, atol=1e-2), f"Single image bounding boxes fail. Expected {expected_boxes}, got {boxes}", ) # batch of images inputs = processor(text=[text, text], images=[image, image], return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) results = processor.post_process_object_detection( outputs, threshold=0.2, target_sizes=[target_size, target_size] ) for result in results: boxes = result["boxes"] self.assertTrue( torch.allclose(boxes, expected_boxes, atol=1e-2), f"Batch image bounding boxes fail. Expected {expected_boxes}, got {boxes}", ) @unittest.skip(reason="OWLv2 doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy def test_call_numpy_4_channels(self): pass