# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest from unittest.util import safe_repr from parameterized import parameterized from transformers import AutoTokenizer, MambaConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MambaForCausalLM, MambaModel, ) from transformers.models.mamba.modeling_mamba import MambaCache class MambaModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, intermediate_size=32, hidden_act="silu", hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, num_labels=3, num_choices=4, scope=None, tie_word_embeddings=True, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 self.tie_word_embeddings = tie_word_embeddings def get_large_model_config(self): return MambaConfig.from_pretrained("hf-internal-testing/mamba-2.8b") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = ids_tensor([self.batch_size, self.seq_length], 1) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config( gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) return ( config, input_ids, attention_mask, sequence_labels, token_labels, choice_labels, ) def get_config( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): return MambaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, intermediate_size=self.intermediate_size, activation_function=self.hidden_act, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, gradient_checkpointing=gradient_checkpointing, tie_word_embeddings=self.tie_word_embeddings, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def create_and_check_mamba_model(self, config, input_ids, *args): config.output_hidden_states = True model = MambaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1) def create_and_check_causal_lm(self, config, input_ids, *args): model = MambaForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_state_equivalency(self, config, input_ids, *args): model = MambaModel(config=config) model.to(torch_device) model.eval() outputs = model(input_ids) output_whole = outputs.last_hidden_state outputs = model( input_ids[:, :-1], use_cache=True, cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device), ) output_one = outputs.last_hidden_state # Using the state computed on the first inputs, we will get the same output outputs = model( input_ids[:, -1:], use_cache=True, cache_params=outputs.cache_params, cache_position=torch.arange(config.conv_kernel, config.conv_kernel + 1, device=input_ids.device), ) output_two = outputs.last_hidden_state self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5)) # TODO the original mamba does not support decoding more than 1 token neither do we def create_and_check_mamba_cached_slow_forward_and_backwards( self, config, input_ids, *args, gradient_checkpointing=False ): model = MambaModel(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() # create cache cache = model(input_ids, use_cache=True).cache_params cache.reset() # use cache token_emb = model.embeddings(input_ids) outputs = model.layers[0].mixer.slow_forward( token_emb, cache, cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device) ) loss = torch.log1p(torch.abs(outputs.sum())) self.parent.assertEqual(loss.shape, ()) self.parent.assertEqual(outputs.shape, (self.batch_size, self.seq_length, self.hidden_size)) loss.backward() def create_and_check_mamba_lm_head_forward_and_backwards( self, config, input_ids, *args, gradient_checkpointing=False ): model = MambaForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def prepare_config_and_inputs_for_common(self): ( config, input_ids, attention_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class MambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MambaModel, MambaForCausalLM) if is_torch_available() else () has_attentions = False # Mamba does not support attentions fx_compatible = False # FIXME let's try to support this @ArthurZucker test_torchscript = False # FIXME let's try to support this @ArthurZucker test_missing_keys = False test_model_parallel = False test_pruning = False test_head_masking = False # Mamba does not have attention heads pipeline_model_mapping = ( {"feature-extraction": MambaModel, "text-generation": MambaForCausalLM} if is_torch_available() else {} ) def setUp(self): self.model_tester = MambaModelTester(self) self.config_tester = ConfigTester( self, config_class=MambaConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"] ) def assertInterval(self, member, container, msg=None): r""" Simple utility function to check if a member is inside an interval. """ if isinstance(member, torch.Tensor): max_value, min_value = member.max().item(), member.min().item() elif isinstance(member, list) or isinstance(member, tuple): max_value, min_value = max(member), min(member) if not isinstance(container, list): raise TypeError("container should be a list or tuple") elif len(container) != 2: raise ValueError("container should have 2 elements") expected_min, expected_max = container is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max) if not is_inside_interval: standardMsg = f"{safe_repr(member)} not found in {safe_repr(container)}" self.fail(self._formatMessage(msg, standardMsg)) def test_config(self): self.config_tester.run_common_tests() @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["cache_params"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = torch.nn.DataParallel(model) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) def test_mamba_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mamba_model(*config_and_inputs) def test_mamba_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm(*config_and_inputs) def test_state_equivalency(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_state_equivalency(*config_and_inputs) def test_mamba_cached_slow_forward_and_backwards(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mamba_cached_slow_forward_and_backwards(*config_and_inputs) def test_mamba_lm_head_forward_and_backwards(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mamba_lm_head_forward_and_backwards(*config_and_inputs) def test_initialization(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, param in model.named_parameters(): if "dt_proj.bias" in name: dt = torch.exp( torch.tensor([0, 1]) * (math.log(config.time_step_max) - math.log(config.time_step_min)) + math.log(config.time_step_min) ).clamp(min=config.time_step_floor) inv_dt = dt + torch.log(-torch.expm1(-dt)) if param.requires_grad: self.assertTrue(param.data.max().item() <= inv_dt[1]) self.assertTrue(param.data.min().item() >= inv_dt[0]) elif "A_log" in name: A = torch.arange(1, config.state_size + 1, dtype=torch.float32)[None, :] A = A.expand(config.intermediate_size, -1).contiguous() torch.testing.assert_close(param.data, torch.log(A), rtol=1e-5, atol=1e-5) elif "D" in name: if param.requires_grad: # check if it's a ones like torch.testing.assert_close(param.data, torch.ones_like(param.data), rtol=1e-5, atol=1e-5) @slow def test_model_from_pretrained(self): model = MambaModel.from_pretrained("hf-internal-testing/mamba-130m") self.assertIsNotNone(model) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, MambaCache): # MODIFIED PART START recursive_check(tuple_object.conv_states, dict_object.conv_states) recursive_check(tuple_object.ssm_states, dict_object.ssm_states) elif isinstance(tuple_object, (list, tuple)): # MODIFIED PART END for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose(tuple_object, dict_object, atol=1e-5), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) @unittest.skip("The `input_embeds` when fed don't produce the same results.") def test_beam_sample_generate(self): pass def test_dtype_mismatch_handled_in_cache(self): config, input_ids, *args = self.model_tester.prepare_config_and_inputs() model = MambaModel(config) model.to(torch_device).to(torch.float16) model.eval() # Create cache with float32 dtype cache_params = MambaCache(config, max_batch_size=input_ids.size(0), dtype=torch.float32, device=torch_device) # If code is correct, no error occurs and test passes outputs = model( input_ids, cache_params=cache_params, use_cache=True, cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device), ) self.assertIsNotNone(outputs) self.assertIsNotNone(outputs.last_hidden_state) self.assertEqual( outputs.last_hidden_state.shape, (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.hidden_size), ) @require_torch class MambaIntegrationTests(unittest.TestCase): def setUp(self): self.model_id = "state-spaces/mamba-2.8b-hf" self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) @parameterized.expand([(torch_device,), ("cpu",)]) def test_simple_generate(self, device): tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf") tokenizer.pad_token = tokenizer.eos_token model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float32) model.to(device) input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"].to(device) out = model.generate(input_ids, do_sample=False, use_cache=True, max_new_tokens=10) output_sentence = tokenizer.decode(out[0, :]) self.assertEqual(output_sentence, "Hey how are you doing?\n\nI'm so glad you're here.") with torch.no_grad(): logits = model(input_ids=input_ids).logits EXPECTED_LOGITS_NO_GRAD = torch.tensor( [ -55.6909, -69.7903, -49.8981, -51.7581, -57.6544, -57.9368, -56.9591, -57.9033, -54.6787, -55.9261, -55.3011, -58.0765, -60.5642, -47.0176, -52.0344, -49.7836, -55.9463, -57.8957, -56.7627, -57.1080, -57.3434, -58.3015, -57.7875, -58.7760, -59.6037, -59.0665, -58.7087, -52.9293, -53.4654, -57.3466, -56.9294, -55.7314, -53.3141, -55.8171, -56.9879, -56.9121, -56.2139, -54.7198, -56.4134, -57.4825 ]) # fmt: skip torch.testing.assert_close(logits[0, 0, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3) @parameterized.expand([(torch_device,), ("cpu",)]) def test_simple_generate_cuda_kernels_tiny(self, device): expected_output = "Hello my name is John and I am a newbie to the world" input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device) model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16).to(device) output = model.generate(input_ids, max_new_tokens=10) output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output) @parameterized.expand([(torch_device,), ("cpu",)]) @slow def test_simple_generate_cuda_kernels_small(self, device): expected_output = "Hello my name is\n\nI am a\n\nI am a" input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device) model = MambaForCausalLM.from_pretrained("state-spaces/mamba-790m-hf", torch_dtype=torch.float16).to(device) output = model.generate(input_ids, max_new_tokens=10) output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output) @parameterized.expand([(torch_device,), ("cpu",)]) @slow def test_simple_generate_cuda_kernels_mid(self, device): expected_output = "Hello my name is John and I am a\n\nI am a single father of a beautiful daughter. I am a" input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device) model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf", torch_dtype=torch.float16).to(device) output = model.generate(input_ids, max_new_tokens=20) output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output) @parameterized.expand([(torch_device,), ("cpu",)]) @slow def test_simple_generate_cuda_kernels_big(self, device): expected_output = "Hello my name is John and I am a new member of this forum. I am a retired Marine and I am a member of the Marine Corps League. I am a" input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device) model = MambaForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", torch_dtype=torch.float16).to(device) output = model.generate(input_ids, max_new_tokens=30) output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output) @slow def test_compile_mamba_cache(self): expected_output = "Hello my name is John and I am a\n\nI am a single father of a beautiful daughter. I am a" input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(torch_device) model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf", torch_dtype=torch.float16).to( torch_device ) output = model.generate(input_ids, max_new_tokens=20, cache_implementation="mamba") output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output) model.forward = torch.compile(model.forward, fullgraph=True, mode="reduce-overhead") output = model.generate(input_ids, max_new_tokens=20, cache_implementation="mamba") output_sentence = self.tokenizer.decode(output[0].tolist()) self.assertEqual(output_sentence, expected_output)