# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from io import BytesIO import requests from transformers import Idefics2Processor from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, Idefics2Processor, ) @require_torch @require_vision class Idefics2ProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Idefics2Processor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2) processor.save_pretrained(cls.tmpdirname) cls.image1 = Image.open( BytesIO( requests.get( "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" ).content ) ) cls.image2 = Image.open( BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content) ) cls.image3 = Image.open( BytesIO( requests.get( "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg" ).content ) ) cls.bos_token = processor.tokenizer.bos_token cls.image_token = processor.image_token cls.fake_image_token = processor.fake_image_token cls.bos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.bos_token) cls.image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.image_token) cls.fake_image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.fake_image_token) cls.image_seq_len = processor.image_seq_len def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs) @staticmethod def prepare_processor_dict(): return {"image_seq_len": 2} @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) def test_process_interleaved_images_prompts_no_image_splitting(self): tokenizer = self.get_tokenizer() processor = self.get_processor() processor.image_processor.do_image_splitting = False # Test that a single image is processed correctly inputs = processor(images=self.image1) self.assertEqual(inputs["pixel_values"].shape, (1, 1, 3, 653, 980)) self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 1, 653, 980)) # fmt: on # Test a single sample with image and text image_str = "" text_str = "In this image, we see" text = image_str + text_str inputs = processor(text=text, images=self.image1) # fmt: off tokenized_sentence = tokenizer(text_str, add_special_tokens=False) expected_input_ids = [[self.bos_token_id] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence["input_ids"]] self.assertEqual(inputs["input_ids"], expected_input_ids) self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])]) self.assertEqual(inputs["pixel_values"].shape, (1, 1, 3, 653, 980)) self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 1, 653, 980)) # fmt: on # Test that batch is correctly processed image_str = "" text_str_1 = "In this image, we see" text_str_2 = "bla, bla" text = [ image_str + text_str_1, text_str_2 + image_str + image_str, ] images = [[self.image1], [self.image2, self.image3]] inputs = processor(text=text, images=images, padding=True) # fmt: off tokenized_sentence_1 = tokenizer(text_str_1, add_special_tokens=False) tokenized_sentence_2 = tokenizer(text_str_2, add_special_tokens=False) expected_input_ids_1 = [self.bos_token_id] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence_1["input_ids"] expected_input_ids_2 = [self.bos_token_id] + tokenized_sentence_2["input_ids"] + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] # Pad the first input to match the second input pad_len = len(expected_input_ids_2) - len(expected_input_ids_1) padded_expected_input_ids_1 = [0] * pad_len + expected_input_ids_1 self.assertEqual( inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2] ) self.assertEqual( inputs["attention_mask"], [[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)] ) self.assertEqual(inputs['pixel_values'].shape, (2, 2, 3, 767, 980)) self.assertEqual(inputs['pixel_attention_mask'].shape, (2, 2, 767, 980)) # fmt: on def test_process_interleaved_images_prompts_image_splitting(self): processor = self.get_processor() tokenizer = self.get_tokenizer() processor.image_processor.do_image_splitting = True # Test that a single image is processed correctly inputs = processor(images=self.image1) self.assertEqual(inputs["pixel_values"].shape, (1, 5, 3, 653, 980)) self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 5, 653, 980)) # fmt: on # Test a single sample with image and text image_str = "" text_str = "In this image, we see" text = image_str + text_str inputs = processor(text=text, images=self.image1) # fmt: off tokenized_sentence = tokenizer(text_str, add_special_tokens=False) expected_input_ids = [[self.bos_token_id] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] + tokenized_sentence["input_ids"]] self.assertEqual(inputs["input_ids"], expected_input_ids) self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])]) self.assertEqual(inputs["pixel_values"].shape, (1, 5, 3, 653, 980)) self.assertEqual(inputs["pixel_attention_mask"].shape, (1, 5, 653, 980)) # fmt: on # Test that batch is correctly processed image_str = "" text_str_1 = "In this image, we see" text_str_2 = "bla, bla" text = [ image_str + text_str_1, text_str_2 + image_str + image_str, ] images = [[self.image1], [self.image2, self.image3]] inputs = processor(text=text, images=images, padding=True) # fmt: off tokenized_sentence_1 = tokenizer(text_str_1, add_special_tokens=False) tokenized_sentence_2 = tokenizer(text_str_2, add_special_tokens=False) expected_input_ids_1 = [self.bos_token_id] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] + tokenized_sentence_1["input_ids"] expected_input_ids_2 = [self.bos_token_id] + tokenized_sentence_2["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * 5 + [self.fake_image_token_id] # Pad the first input to match the second input pad_len = len(expected_input_ids_2) - len(expected_input_ids_1) padded_expected_input_ids_1 = [0] * pad_len + expected_input_ids_1 self.assertEqual( inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2] ) self.assertEqual( inputs["attention_mask"], [[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)] ) self.assertEqual(inputs['pixel_values'].shape, (2, 10, 3, 767, 980)) self.assertEqual(inputs['pixel_attention_mask'].shape, (2, 10, 767, 980)) # fmt: on def test_add_special_tokens_processor(self): processor = self.get_processor() tokenizer = self.get_tokenizer() image_str = "" text_str = "In this image, we see" text = text_str + image_str n_image_repeat = 5 if processor.image_processor.do_image_splitting else 1 # fmt: off inputs = processor(text=text, images=self.image1, add_special_tokens=False) tokenized_sentence = tokenizer(text_str, add_special_tokens=False) expected_input_ids = [tokenized_sentence["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * n_image_repeat + [self.fake_image_token_id]] self.assertEqual(inputs["input_ids"], expected_input_ids) inputs = processor(text=text, images=self.image1) expected_input_ids = [[self.bos_token_id] + tokenized_sentence["input_ids"] + ([self.fake_image_token_id] + [self.image_token_id] * self.image_seq_len) * n_image_repeat + [self.fake_image_token_id]] self.assertEqual(inputs["input_ids"], expected_input_ids) # fmt: on def test_non_nested_images_with_batched_text(self): processor = self.get_processor() processor.image_processor.do_image_splitting = False image_str = "" text_str_1 = "In this image, we see" text_str_2 = "bla, bla" text = [ image_str + text_str_1, text_str_2 + image_str + image_str, ] images = [self.image1, self.image2, self.image3] inputs = processor(text=text, images=images, padding=True) self.assertEqual(inputs["pixel_values"].shape, (2, 2, 3, 767, 980)) self.assertEqual(inputs["pixel_attention_mask"].shape, (2, 2, 767, 980)) def test_process_interleaved_images_prompts_image_error(self): processor = self.get_processor() text = [ "This is a test sentence.", "In this other sentence we try some good things", ] images = [[self.image1], [self.image2]] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [[self.image1], []] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) text = [ "This is a test sentence.", "In this other sentence we try some good things", ] images = [[self.image1], [self.image2, self.image3]] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [[], [self.image2]] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [self.image1, self.image2, self.image3] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [self.image1] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) text = [ "This is a test sentence.", "In this other sentence we try some good things", ] images = [[self.image1], []] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [[], [self.image2]] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [self.image1, self.image2] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) images = [self.image1] with self.assertRaises(ValueError): processor(text=text, images=images, padding=True) def test_apply_chat_template(self): # Message contains content which a mix of lists with images and image urls and string messages = [ { "role": "user", "content": [ {"type": "text", "text": "What do these images show?"}, {"type": "image"}, {"type": "image"}, "What do these images show?", ], }, { "role": "assistant", "content": [ { "type": "text", "text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.", } ], }, {"role": "user", "content": [{"type": "text", "text": "And who is that?"}]}, ] processor = self.get_processor() # Make short sequence length to test that the fake tokens are added correctly rendered = processor.apply_chat_template(messages, add_generation_prompt=True) expected_rendered = ( "User: What do these images show?\n" "Assistant: The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.\n" "User: And who is that?\n" "Assistant:" ) self.assertEqual(rendered, expected_rendered)