# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from typing import Optional from transformers import Gemma3Processor, GemmaTokenizer from transformers.testing_utils import get_tests_dir, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import Gemma3ImageProcessor SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_vision class Gemma3ProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Gemma3Processor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() gemma3_image_processor_kwargs = { "do_pan_and_scan": True, "pan_and_scan_min_crop_size": 256, "pan_and_scan_max_num_crops": 4, "pan_and_scan_min_ratio_to_activate": 1.2, } image_processor = Gemma3ImageProcessor.from_pretrained( "google/siglip-so400m-patch14-384", **gemma3_image_processor_kwargs ) extra_special_tokens = { "image_token": "", "boi_token": "", "eoi_token": "", } tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True, extra_special_tokens=extra_special_tokens) processor_kwargs = cls.prepare_processor_dict() processor = Gemma3Processor(image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs) processor.save_pretrained(cls.tmpdirname) cls.image_token = processor.boi_token @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) # TODO: raushan or arthur: add the real chat template @staticmethod def prepare_processor_dict(): return { "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'model\n'}}\n{%- endif -%}\n", "image_seq_length": 3, } # fmt: skip # Override as Gemma3 needs images to be an explicitly nested batch def prepare_image_inputs(self, batch_size: Optional[int] = None): """This function prepares a list of PIL images for testing""" images = super().prepare_image_inputs(batch_size) if isinstance(images, (list, tuple)): images = [[image] for image in images] return images def test_text_with_image_tokens(self): image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) text_multi_images = f"{processor.boi_token}{processor.boi_token}Dummy text!" text_single_image = f"{processor.boi_token}Dummy text!" text_no_image = "Dummy text!" image = self.prepare_image_inputs() # If text has no image tokens, image should be `None` with self.assertRaises(ValueError): _ = processor(text=text_no_image, images=image, return_tensors="np") # We can't be sure what is users intention: if user wants one image per text OR two images for first text and no image for second text with self.assertRaises(ValueError): _ = processor(text=[text_single_image, text_single_image], images=[image, image], return_tensors="np") # The users is expected to be explicit about which image belong to which text by nesting the images list out_multiimages = processor(text=text_multi_images, images=[image, image], return_tensors="np") out_batch_oneimage = processor( text=[text_single_image, text_single_image], images=[[image], [image]], return_tensors="np" ) self.assertListEqual( out_batch_oneimage[self.images_input_name].tolist(), out_multiimages[self.images_input_name].tolist() ) def test_pan_and_scan(self): processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) input_str = self.prepare_text_inputs(modality="image") image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="np", do_pan_and_scan=True, image_seq_length=2, pan_and_scan_min_crop_size=10, ) # base image + 4 crops self.assertEqual(len(inputs[self.images_input_name]), 5) self.assertEqual(len(inputs[self.text_input_name][0]), 67) def test_special_mm_token_truncation(self): """Tests that special vision tokens do not get truncated when `truncation=True` is set.""" processor = self.get_processor() input_str = self.prepare_text_inputs(batch_size=2, modality="image") image_input = self.prepare_image_inputs(batch_size=2) _ = processor( text=input_str, images=image_input, return_tensors="pt", truncation=None, padding=True, ) with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, return_tensors="pt", truncation=True, padding=True, max_length=5, )