Commit Graph

70 Commits

Author SHA1 Message Date
samuel.broscheit
49a77ac16f Clean up a little bit 2019-05-12 00:31:10 +02:00
samuel.broscheit
3bf3f9596f Fixing the issues reported in https://github.com/huggingface/pytorch-pretrained-BERT/issues/556
Reason for issue was that optimzation steps where computed from example size, which is different from actual size of dataloader when an example is chunked into multiple instances.

Solution in this pull request is to compute num_optimization_steps directly from len(data_loader).
2019-05-12 00:13:45 +02:00
burcturkoglu
00c7fd2b79 Division to num_train_optimizer of global_step in lr_this_step is removed. 2019-05-09 10:57:03 +03:00
burcturkoglu
fa37b4da77 Merge branch 'master' of https://github.com/huggingface/pytorch-pretrained-BERT 2019-05-09 10:55:24 +03:00
burcturkoglu
5289b4b9e0 Division to num_train_optimizer of global_step in lr_this_step is removed. 2019-05-09 10:51:38 +03:00
Thomas Wolf
0198399d84
Merge pull request #570 from MottoX/fix-1
Create optimizer only when args.do_train is True
2019-05-08 16:07:50 +02:00
MottoX
18c8aef9d3 Fix documentation typo 2019-05-02 19:23:36 +08:00
MottoX
74dbba64bc Prepare optimizer only when args.do_train is True 2019-05-02 19:09:29 +08:00
Thomas Wolf
2dee86319d
Merge pull request #527 from Mathieu-Prouveur/fix_value_training_loss
Update example files so that tr_loss is not affected by args.gradient…
2019-04-30 11:12:55 +02:00
Mathieu Prouveur
87b9ec3843 Fix tr_loss rescaling factor using global_step 2019-04-29 12:58:29 +02:00
Mathieu Prouveur
ed8fad7390 Update example files so that tr_loss is not affected by args.gradient_accumulation_step 2019-04-24 14:07:00 +02:00
thomwolf
d94c6b0144 fix training schedules in examples to match new API 2019-04-23 11:17:06 +02:00
Thomas Wolf
3d78e226e6
Merge pull request #489 from huggingface/tokenization_serialization
Better serialization for Tokenizers and Configuration classes - Also fix #466
2019-04-16 08:49:54 +02:00
thomwolf
3571187ef6 fix saving models in distributed setting examples 2019-04-15 16:43:56 +02:00
thomwolf
1135f2384a clean up logger in examples for distributed case 2019-04-15 15:22:40 +02:00
thomwolf
60ea6c59d2 added best practices for serialization in README and examples 2019-04-15 15:00:33 +02:00
thomwolf
179a2c2ff6 update example to work with new serialization semantic 2019-04-15 14:33:23 +02:00
Jie Yang
c49ce3c722 fix tsv read error in Windows 2019-04-11 15:40:19 -04:00
Weixin Wang
d07db28f52
Fix typo in example code
Modify 'unambigiously' to 'unambiguously'
2019-03-31 01:20:18 +08:00
Ananya Harsh Jha
e5b63fb542 Merge branch 'master' of https://github.com/ananyahjha93/pytorch-pretrained-BERT
pull current master to local
2019-03-17 08:30:13 -04:00
Ananya Harsh Jha
8a4e90ff40 corrected folder creation error for MNLI-MM, verified GLUE results 2019-03-17 08:16:50 -04:00
Ananya Harsh Jha
e0bf01d9a9 added hack for mismatched MNLI 2019-03-16 14:10:48 -04:00
Ananya Harsh Jha
4c721c6b6a added eval time metrics for GLUE tasks 2019-03-15 23:21:24 -04:00
Ananya Harsh Jha
043c8781ef added code for all glue task processors 2019-03-14 04:24:04 -04:00
Yongbo Wang
22a465a91f
Simplify code, delete redundancy line
delete redundancy line `if args.train`, simplify code.
2019-03-13 09:42:06 +08:00
thomwolf
994d86609b fixing PYTORCH_PRETRAINED_BERT_CACHE use in examples 2019-03-06 10:21:24 +01:00
thomwolf
5c85fc3977 fix typo - logger info 2019-03-06 10:05:21 +01:00
John Lehmann
0f96d4b1f7 Run classifier processor for SST-2. 2019-03-05 13:38:28 -06:00
thomwolf
eebc8abbe2 clarify and unify model saving logic in examples 2019-02-11 14:04:19 +01:00
Thomas Wolf
848aae49e1
Merge branch 'master' into python_2 2019-02-06 00:13:20 +01:00
thomwolf
448937c00d python 2 compatibility 2019-02-06 00:07:46 +01:00
thomwolf
1579c53635 more explicit notation: num_train_step => num_train_optimization_steps 2019-02-05 15:36:33 +01:00
Matej Svejda
5169069997 make examples consistent, revert error in num_train_steps calculation 2019-01-30 11:47:25 +01:00
Matej Svejda
9c6a48c8c3 fix learning rate/fp16 and warmup problem for all examples 2019-01-27 14:07:24 +01:00
Matej Svejda
01ff4f82ba learning rate problems in run_classifier.py 2019-01-22 23:40:06 +01:00
thomwolf
c9fd350567 remove default when action is store_true in arguments 2019-01-07 13:01:54 +01:00
Thomas Wolf
766c6b2ce3
Merge pull request #159 from jaderabbit/master
Allow do_eval to be used without do_train and to use the pretrained model in the output folder
2019-01-07 12:31:06 +01:00
Thomas Wolf
77966a43a4
Merge pull request #156 from rodgzilla/cl_args_doc
Adding new pretrained model to the help of the `bert_model` argument.
2019-01-07 12:27:16 +01:00
Jade Abbott
193e2df8ba Remove rogue comment 2019-01-03 13:13:06 +02:00
Jade Abbott
c64de50ea4 nb_tr_steps is not initialized 2019-01-03 12:34:57 +02:00
Jade Abbott
b96149a19b Training loss is not initialized if only do_eval is specified 2019-01-03 10:32:10 +02:00
Jade Abbott
be3b9bcf4d Allow one to use the pretrained model in evaluation when do_train is not selected 2019-01-03 09:02:33 +02:00
Grégory Châtel
186f75342e Adding new pretrained model to the help of the bert_model argument. 2019-01-02 14:00:59 +01:00
Jasdeep Singh
99709ee61d
loading saved model when n_classes != 2
Required to for: Assertion `t >= 0 && t < n_classes` failed,  if your default number of classes is not 2.
2018-12-20 13:55:47 -08:00
thomwolf
ae88eb88a4 set encoding to 'utf-8' in calls to open 2018-12-14 13:48:58 +01:00
thomwolf
e1eab59aac no fp16 on evaluation 2018-12-13 14:54:02 +01:00
thomwolf
087798b7fa fix reloading model for evaluation in examples 2018-12-13 14:48:12 +01:00
thomwolf
0cf88ff084 make examples work without apex 2018-12-13 13:28:00 +01:00
thomwolf
d3fcec1a3e add saving and loading model in examples 2018-12-13 12:50:44 +01:00
thomwolf
b3caec5a56 adding save checkpoint and loading in examples 2018-12-13 12:48:13 +01:00