diff --git a/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py b/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py index 0c944472091..c9de3577bb8 100755 --- a/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py +++ b/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py @@ -195,7 +195,7 @@ class DataCollatorSpeechSeq2SeqWithPadding: Data collator that will dynamically pad the inputs received. Args: processor ([`Wav2Vec2Processor`]) - The processor used for proccessing the data. + The processor used for processing the data. decoder_start_token_id (`int`) The begin-of-sentence of the decoder. """ @@ -204,7 +204,7 @@ class DataCollatorSpeechSeq2SeqWithPadding: decoder_start_token_id: int def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: - # split inputs and labels since they have to be of different lenghts and need + # split inputs and labels since they have to be of different lengths and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] @@ -271,7 +271,7 @@ def main(): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) - # 3. Detecting last checkpoint and eventualy continue from last checkpoint + # 3. Detecting last checkpoint and eventually continue from last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) @@ -360,7 +360,7 @@ def main(): if model_args.freeze_feature_encoder: model.freeze_feature_encoder() - # 6. Resample speech dataset if necassary + # 6. Resample speech dataset if necessary dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column(