diff --git a/examples/pytorch/image-classification/run_image_classification_no_trainer.py b/examples/pytorch/image-classification/run_image_classification_no_trainer.py index 1bd190d1303..69ee2875e61 100644 --- a/examples/pytorch/image-classification/run_image_classification_no_trainer.py +++ b/examples/pytorch/image-classification/run_image_classification_no_trainer.py @@ -414,14 +414,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("image_classification_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("image_classification_no_trainer", experiment_config) # Get the metric function metric = evaluate.load("accuracy") diff --git a/examples/pytorch/language-modeling/run_clm_no_trainer.py b/examples/pytorch/language-modeling/run_clm_no_trainer.py index 225b88a4944..d00d0792ab9 100755 --- a/examples/pytorch/language-modeling/run_clm_no_trainer.py +++ b/examples/pytorch/language-modeling/run_clm_no_trainer.py @@ -516,14 +516,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("clm_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("clm_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps diff --git a/examples/pytorch/language-modeling/run_mlm_no_trainer.py b/examples/pytorch/language-modeling/run_mlm_no_trainer.py index c01f870cdd4..7da09e16c59 100755 --- a/examples/pytorch/language-modeling/run_mlm_no_trainer.py +++ b/examples/pytorch/language-modeling/run_mlm_no_trainer.py @@ -560,14 +560,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("mlm_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("mlm_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps diff --git a/examples/pytorch/multiple-choice/run_swag_no_trainer.py b/examples/pytorch/multiple-choice/run_swag_no_trainer.py index eeb04e417fd..4cf2c9cc440 100755 --- a/examples/pytorch/multiple-choice/run_swag_no_trainer.py +++ b/examples/pytorch/multiple-choice/run_swag_no_trainer.py @@ -513,14 +513,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("swag_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("swag_no_trainer", experiment_config) # Metrics metric = evaluate.load("accuracy") diff --git a/examples/pytorch/question-answering/run_qa_no_trainer.py b/examples/pytorch/question-answering/run_qa_no_trainer.py index 6bf4eb28e99..fb6e1e96d52 100755 --- a/examples/pytorch/question-answering/run_qa_no_trainer.py +++ b/examples/pytorch/question-answering/run_qa_no_trainer.py @@ -787,14 +787,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("qa_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("qa_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps diff --git a/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py b/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py index 30cb7cc53ae..a6550176aa3 100644 --- a/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py +++ b/examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py @@ -512,14 +512,12 @@ def main(): metric = evaluate.load("mean_iou") # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("semantic_segmentation_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("semantic_segmentation_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps diff --git a/examples/pytorch/summarization/run_summarization_no_trainer.py b/examples/pytorch/summarization/run_summarization_no_trainer.py index 96781b6dcad..b75b4bf7d4c 100644 --- a/examples/pytorch/summarization/run_summarization_no_trainer.py +++ b/examples/pytorch/summarization/run_summarization_no_trainer.py @@ -581,14 +581,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("summarization_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("summarization_no_trainer", experiment_config) # Metric metric = evaluate.load("rouge") diff --git a/examples/pytorch/text-classification/run_glue_no_trainer.py b/examples/pytorch/text-classification/run_glue_no_trainer.py index f74e5520699..1213460cfb9 100644 --- a/examples/pytorch/text-classification/run_glue_no_trainer.py +++ b/examples/pytorch/text-classification/run_glue_no_trainer.py @@ -459,14 +459,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("glue_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("glue_no_trainer", experiment_config) # Get the metric function if args.task_name is not None: diff --git a/examples/pytorch/token-classification/run_ner_no_trainer.py b/examples/pytorch/token-classification/run_ner_no_trainer.py index 937abb718e7..1156e1f4f01 100755 --- a/examples/pytorch/token-classification/run_ner_no_trainer.py +++ b/examples/pytorch/token-classification/run_ner_no_trainer.py @@ -574,14 +574,12 @@ def main(): checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. - # We initialize the trackers only on main process because `accelerator.log` - # only logs on main process and we don't want empty logs/runs on other processes. + # The trackers initializes automatically on the main process. if args.with_tracking: - if accelerator.is_main_process: - experiment_config = vars(args) - # TensorBoard cannot log Enums, need the raw value - experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value - accelerator.init_trackers("ner_no_trainer", experiment_config) + experiment_config = vars(args) + # TensorBoard cannot log Enums, need the raw value + experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value + accelerator.init_trackers("ner_no_trainer", experiment_config) # Metrics metric = evaluate.load("seqeval")