diff --git a/model_cards/tblard/tf-allocine/README.md b/model_cards/tblard/tf-allocine/README.md new file mode 100644 index 00000000000..e5766373922 --- /dev/null +++ b/model_cards/tblard/tf-allocine/README.md @@ -0,0 +1,40 @@ +--- +language: french +--- + +# tf-allociné + +A french sentiment analysis model, based on [CamemBERT](https://camembert-model.fr/), and finetuned on a large-scale dataset scraped from [Allociné.fr](http://www.allocine.fr/) user reviews. + +## Results + +| Validation Accuracy | Validation F1-Score | Test Accuracy | Test F1-Score | +|--------------------:| -------------------:| -------------:|--------------:| +| 97.39 | 97.36 | 97.44 | 97.34 | + +The dataset and the evaluation code are available on [this repo](https://github.com/TheophileBlard/french-sentiment-analysis-with-bert). + +## Usage + +```python +from transformers import AutoTokenizer, TFAutoModelForSequenceClassification +from transformers import pipeline + +tokenizer = AutoTokenizer.from_pretrained("tblard/tf-allocine") +model = TFAutoModelForSequenceClassification.from_pretrained("tblard/tf-allocine") + +nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) + +print(nlp("Alad'2 est clairement le meilleur film de l'année 2018.")) # POSITIVE +print(nlp("Juste whoaaahouuu !")) # POSITIVE +print(nlp("NUL...A...CHIER ! FIN DE TRANSMISSION.")) # NEGATIVE +print(nlp("Je m'attendais à mieux de la part de Franck Dubosc !")) # NEGATIVE +``` + +## Author + +Théophile Blard – :email: theophile.blard@gmail.com + +If you use this work (code, model or dataset), please cite as: + +> Théophile Blard, French sentiment analysis with BERT, (2020), GitHub repository,