diff --git a/src/transformers/generation/logits_process.py b/src/transformers/generation/logits_process.py
index 72c27be3bc2..e4ac6537544 100644
--- a/src/transformers/generation/logits_process.py
+++ b/src/transformers/generation/logits_process.py
@@ -1085,19 +1085,19 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
class HammingDiversityLogitsProcessor(LogitsProcessor):
r"""
- [`LogitsProcessor`] that enforces diverse beam search.
-
+ [`LogitsProcessor`] that enforces diverse beam search.
+
Note that this logits processor is only effective for
[`PreTrainedModel.group_beam_search`]. See [Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence
Models](https://arxiv.org/pdf/1610.02424.pdf) for more details.
- Diverse beam search can be particularly useful in scenarios where a variety of different outputs is desired, rather than multiple similar sequences.
+ Diverse beam search can be particularly useful in scenarios where a variety of different outputs is desired, rather than multiple similar sequences.
It allows the model to explore different generation paths and provides a broader coverage of possible outputs.
-
+
This logits processor can be resource-intensive, especially when using large models or long sequences.
@@ -1168,7 +1168,7 @@ class HammingDiversityLogitsProcessor(LogitsProcessor):
# Set up for diverse beam search
num_beams = 6
- num_beam_groups = 2
+ num_beam_groups = 2
model_kwargs = {
"encoder_outputs": model.get_encoder()(