diff --git a/model_cards/rohanrajpal/bert-base-en-es-codemix-cased/README.md b/model_cards/rohanrajpal/bert-base-en-es-codemix-cased/README.md new file mode 100644 index 00000000000..151c5f040f9 --- /dev/null +++ b/model_cards/rohanrajpal/bert-base-en-es-codemix-cased/README.md @@ -0,0 +1,101 @@ +--- +language: +- es +- en +tags: +- es +- en +- codemix +license: "apache-2.0" +datasets: +- SAIL 2017 +metrics: +- fscore +- accuracy +- precision +- recall +--- + +# BERT codemixed base model for spanglish (cased) + +This model was built using [lingualytics](https://github.com/lingualytics/py-lingualytics), an open-source library that supports code-mixed analytics. + +## Model description + +Input for the model: Any codemixed spanglish text +Output for the model: Sentiment. (0 - Negative, 1 - Neutral, 2 - Positive) + +I took a bert-base-multilingual-cased model from Huggingface and finetuned it on [CS-EN-ES-CORPUS](http://www.grupolys.org/software/CS-CORPORA/cs-en-es-corpus-wassa2015.txt) dataset. + +Performance of this model on the dataset + +| metric | score | +|------------|----------| +| acc | 0.718615 | +| f1 | 0.71759 | +| acc_and_f1 | 0.718103 | +| precision | 0.719302 | +| recall | 0.718615 | + +## Intended uses & limitations + +Make sure to preprocess your data using [these methods](https://github.com/microsoft/GLUECoS/blob/master/Data/Preprocess_Scripts/preprocess_sent_en_es.py) before using this model. + +#### How to use + +Here is how to use this model to get the features of a given text in *PyTorch*: + +```python +# You can include sample code which will be formatted +from transformers import BertTokenizer, BertModelForSequenceClassification +tokenizer = AutoTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') +model = AutoModelForSequenceClassification.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') +text = "Replace me by any text you'd like." +encoded_input = tokenizer(text, return_tensors='pt') +output = model(**encoded_input) +``` + +and in *TensorFlow*: + +```python +from transformers import BertTokenizer, TFBertModel +tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') +model = TFBertModel.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') +text = "Replace me by any text you'd like." +encoded_input = tokenizer(text, return_tensors='tf') +output = model(encoded_input) +``` + +#### Limitations and bias + +Since I dont know spanish, I cant verify the quality of annotations or the dataset itself. This is a very simple transfer learning approach and I'm open to discussions to improve upon this. + +## Training data + +I trained on the dataset on the [bert-base-multilingual-cased model](https://huggingface.co/bert-base-multilingual-cased). + +## Training procedure + +Followed the preprocessing techniques followed [here](https://github.com/microsoft/GLUECoS/blob/master/Data/Preprocess_Scripts/preprocess_sent_en_es.py) + +## Eval results + +### BibTeX entry and citation info + +```bibtex +@inproceedings{khanuja-etal-2020-gluecos, + title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}", + author = "Khanuja, Simran and + Dandapat, Sandipan and + Srinivasan, Anirudh and + Sitaram, Sunayana and + Choudhury, Monojit", + booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", + month = jul, + year = "2020", + address = "Online", + publisher = "Association for Computational Linguistics", + url = "https://www.aclweb.org/anthology/2020.acl-main.329", + pages = "3575--3585" +} +```