diff --git a/docker/transformers-all-latest-gpu/Dockerfile b/docker/transformers-all-latest-gpu/Dockerfile
index ce67f444c4d..75876dde53e 100644
--- a/docker/transformers-all-latest-gpu/Dockerfile
+++ b/docker/transformers-all-latest-gpu/Dockerfile
@@ -7,7 +7,7 @@ RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
-ARG REF=master
+ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
diff --git a/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile b/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile
index f20763e7c82..9ef0ac46238 100644
--- a/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile
+++ b/docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile
@@ -7,7 +7,7 @@ RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
-ARG REF=master
+ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[testing,deepspeed]
diff --git a/docker/transformers-pytorch-gpu/Dockerfile b/docker/transformers-pytorch-gpu/Dockerfile
index 32bbd5cb063..d1828190b14 100644
--- a/docker/transformers-pytorch-gpu/Dockerfile
+++ b/docker/transformers-pytorch-gpu/Dockerfile
@@ -7,7 +7,7 @@ RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
-ARG REF=master
+ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
diff --git a/docker/transformers-pytorch-tpu/Dockerfile b/docker/transformers-pytorch-tpu/Dockerfile
index 860cffddc0f..b61f4add514 100644
--- a/docker/transformers-pytorch-tpu/Dockerfile
+++ b/docker/transformers-pytorch-tpu/Dockerfile
@@ -1,7 +1,7 @@
FROM google/cloud-sdk:slim
# Build args.
-ARG GITHUB_REF=refs/heads/master
+ARG GITHUB_REF=refs/heads/main
# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
# wheels available; see below.
diff --git a/docker/transformers-tensorflow-gpu/Dockerfile b/docker/transformers-tensorflow-gpu/Dockerfile
index 4c210b21f95..a05ace7d08e 100644
--- a/docker/transformers-tensorflow-gpu/Dockerfile
+++ b/docker/transformers-tensorflow-gpu/Dockerfile
@@ -7,7 +7,7 @@ RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
-ARG REF=master
+ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
diff --git a/docs/source/benchmarks.mdx b/docs/source/benchmarks.mdx
index 3d97d725ce5..244112001f5 100644
--- a/docs/source/benchmarks.mdx
+++ b/docs/source/benchmarks.mdx
@@ -23,7 +23,7 @@ and memory complexity of Transformer models.
Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks.
-A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/master/examples/benchmark.ipynb).
+A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb).
## How to benchmark 🤗 Transformers models
diff --git a/docs/source/custom_datasets.mdx b/docs/source/custom_datasets.mdx
index 45ba23fce26..7a0c4e3bc2b 100644
--- a/docs/source/custom_datasets.mdx
+++ b/docs/source/custom_datasets.mdx
@@ -43,8 +43,8 @@ whether a review is positive or negative.
For a more in-depth example of how to fine-tune a model for text classification, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
@@ -228,8 +228,8 @@ such as a person, location, or organization. In this example, learn how to fine-
For a more in-depth example of how to fine-tune a model for token classification, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
@@ -472,8 +472,8 @@ given a question. In this example, learn how to fine-tune a model on the [SQuAD]
For a more in-depth example of how to fine-tune a model for question answering, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
diff --git a/docs/source/model_doc/barthez.mdx b/docs/source/model_doc/barthez.mdx
index 4d8743c9f87..f1969e8e942 100644
--- a/docs/source/model_doc/barthez.mdx
+++ b/docs/source/model_doc/barthez.mdx
@@ -38,7 +38,7 @@ This model was contributed by [moussakam](https://huggingface.co/moussakam). The
### Examples
- BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check:
- [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization/README.md).
+ [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
## BarthezTokenizer
diff --git a/docs/source/tasks/audio_classification.mdx b/docs/source/tasks/audio_classification.mdx
index 183bfe4c1d5..e239461762f 100644
--- a/docs/source/tasks/audio_classification.mdx
+++ b/docs/source/tasks/audio_classification.mdx
@@ -142,6 +142,6 @@ At this point, only three steps remain:
-For a more in-depth example of how to fine-tune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb).
+For a more in-depth example of how to fine-tune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/image_classification.mdx b/docs/source/tasks/image_classification.mdx
index 7646feb55c1..0ca317e79d6 100644
--- a/docs/source/tasks/image_classification.mdx
+++ b/docs/source/tasks/image_classification.mdx
@@ -169,6 +169,6 @@ At this point, only three steps remain:
-For a more in-depth example of how to fine-tune a model for image classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/image_classification.ipynb).
+For a more in-depth example of how to fine-tune a model for image classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/language_modeling.mdx b/docs/source/tasks/language_modeling.mdx
index d79be859ef1..b3b6dd75301 100644
--- a/docs/source/tasks/language_modeling.mdx
+++ b/docs/source/tasks/language_modeling.mdx
@@ -412,7 +412,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
For a more in-depth example of how to fine-tune a model for causal language modeling, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/question_answering.mdx b/docs/source/tasks/question_answering.mdx
index 61f81cb3e1e..d5df758db3a 100644
--- a/docs/source/tasks/question_answering.mdx
+++ b/docs/source/tasks/question_answering.mdx
@@ -267,7 +267,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
For a more in-depth example of how to fine-tune a model for question answering, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/sequence_classification.mdx b/docs/source/tasks/sequence_classification.mdx
index 0908848b9a1..97c98bb8882 100644
--- a/docs/source/tasks/sequence_classification.mdx
+++ b/docs/source/tasks/sequence_classification.mdx
@@ -208,7 +208,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
For a more in-depth example of how to fine-tune a model for text classification, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/summarization.mdx b/docs/source/tasks/summarization.mdx
index 7083cdce4da..c750e473282 100644
--- a/docs/source/tasks/summarization.mdx
+++ b/docs/source/tasks/summarization.mdx
@@ -217,7 +217,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
For a more in-depth example of how to fine-tune a model for summarization, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/token_classification.mdx b/docs/source/tasks/token_classification.mdx
index ff26b3af94b..03cd304898b 100644
--- a/docs/source/tasks/token_classification.mdx
+++ b/docs/source/tasks/token_classification.mdx
@@ -266,7 +266,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
For a more in-depth example of how to fine-tune a model for token classification, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
\ No newline at end of file
diff --git a/docs/source/tasks/translation.mdx b/docs/source/tasks/translation.mdx
index 26723241a11..b3ecec6e1ce 100644
--- a/docs/source/tasks/translation.mdx
+++ b/docs/source/tasks/translation.mdx
@@ -219,7 +219,7 @@ Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fin
For a more in-depth example of how to fine-tune a model for translation, take a look at the corresponding
-[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation.ipynb)
-or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation-tf.ipynb).
+[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
+or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
\ No newline at end of file
diff --git a/docs/source/testing.mdx b/docs/source/testing.mdx
index da64bcdc02d..a5e2268092e 100644
--- a/docs/source/testing.mdx
+++ b/docs/source/testing.mdx
@@ -23,21 +23,21 @@ There are 2 test suites in the repository:
## How transformers are tested
1. Once a PR is submitted it gets tested with 9 CircleCi jobs. Every new commit to that PR gets retested. These jobs
- are defined in this [config file](https://github.com/huggingface/transformers-doc2mdx/tree/master/.circleci/config.yml), so that if needed you can reproduce the same
+ are defined in this [config file](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml), so that if needed you can reproduce the same
environment on your machine.
These CI jobs don't run `@slow` tests.
2. There are 3 jobs run by [github actions](https://github.com/huggingface/transformers/actions):
- - [torch hub integration](https://github.com/huggingface/transformers-doc2mdx/tree/master/.github/workflows/github-torch-hub.yml): checks whether torch hub
+ - [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): checks whether torch hub
integration works.
- - [self-hosted (push)](https://github.com/huggingface/transformers-doc2mdx/tree/master/.github/workflows/self-push.yml): runs fast tests on GPU only on commits on
+ - [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): runs fast tests on GPU only on commits on
`main`. It only runs if a commit on `main` has updated the code in one of the following folders: `src`,
`tests`, `.github` (to prevent running on added model cards, notebooks, etc.)
- - [self-hosted runner](https://github.com/huggingface/transformers-doc2mdx/tree/master/.github/workflows/self-scheduled.yml): runs normal and slow tests on GPU in
+ - [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): runs normal and slow tests on GPU in
`tests` and `examples`:
```bash
@@ -473,8 +473,8 @@ spawns a normal process that then spawns off multiple workers and manages the IO
Here are some tests that use it:
-- [test_trainer_distributed.py](https://github.com/huggingface/transformers-doc2mdx/tree/master/tests/test_trainer_distributed.py)
-- [test_deepspeed.py](https://github.com/huggingface/transformers-doc2mdx/tree/master/tests/deepspeed/test_deepspeed.py)
+- [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/test_trainer_distributed.py)
+- [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py)
To jump right into the execution point, search for the `execute_subprocess_async` call in those tests.
@@ -930,7 +930,7 @@ slow models to do qualitative testing. To see the use of these simply look for *
grep tiny tests examples
```
-Here is a an example of a [script](https://github.com/huggingface/transformers-doc2mdx/tree/master/scripts/fsmt/fsmt-make-tiny-model.py) that created the tiny model
+Here is a an example of a [script](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py) that created the tiny model
[stas/tiny-wmt19-en-de](https://huggingface.co/stas/tiny-wmt19-en-de). You can easily adjust it to your specific
model's architecture.
diff --git a/examples/flax/README.md b/examples/flax/README.md
index bf2c2be4596..074aaa292ce 100644
--- a/examples/flax/README.md
+++ b/examples/flax/README.md
@@ -26,9 +26,9 @@ The following table lists all of our examples on how to use 🤗 Transformers wi
| Task | Example model | Example dataset | 🤗 Datasets | Colab
|---|---|---|:---:|:---:|
-| [**`causal-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | GPT2 | OSCAR | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/causal_language_modeling_flax.ipynb)
-| [**`masked-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | RoBERTa | OSCAR | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/masked_language_modeling_flax.ipynb)
-| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) | BERT | GLUE | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification_flax.ipynb)
+| [**`causal-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | GPT2 | OSCAR | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb)
+| [**`masked-language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) | RoBERTa | OSCAR | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb)
+| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) | BERT | GLUE | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)
## Intro: JAX and Flax
diff --git a/examples/flax/language-modeling/README.md b/examples/flax/language-modeling/README.md
index 0c8826c30dc..79f60117881 100644
--- a/examples/flax/language-modeling/README.md
+++ b/examples/flax/language-modeling/README.md
@@ -123,7 +123,7 @@ This should take less than 18 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a
-look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/masked_language_modeling_flax.ipynb) google colab.
+look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab.
## Causal language modeling
@@ -224,7 +224,7 @@ This should take less than ~21 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA).
For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a
-look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/causal_language_modeling_flax.ipynb) google colab.
+look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab.
## T5-like span-masked language modeling
diff --git a/examples/pytorch/README.md b/examples/pytorch/README.md
index 13fe1bde8ea..4990ba489d6 100644
--- a/examples/pytorch/README.md
+++ b/examples/pytorch/README.md
@@ -32,18 +32,18 @@ Coming soon!
| Task | Example datasets | Trainer support | 🤗 Accelerate | 🤗 Datasets | Colab
|---|---|:---:|:---:|:---:|:---:|
-| [**`language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) | WikiText-2 | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)
-| [**`multiple-choice`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) | SWAG | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)
-| [**`question-answering`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) | SQuAD | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
-| [**`summarization`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) | XSum | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)
-| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) | GLUE | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
-| [**`text-generation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation) | - | n/a | - | - | [](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)
-| [**`token-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) | CoNLL NER | ✅ |✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
-| [**`translation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) | WMT | ✅ | ✅ |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation.ipynb)
-| [**`speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | TIMIT | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)
-| [**`multi-lingual speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | Common Voice | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)
-| [**`audio-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) | SUPERB KS | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)
-| [**`image-classification`**](https://github.com/huggingface/notebooks/blob/master/examples/image_classification.ipynb) | CIFAR-10 | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/image_classification.ipynb)
+| [**`language-modeling`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) | WikiText-2 | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
+| [**`multiple-choice`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) | SWAG | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)
+| [**`question-answering`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) | SQuAD | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)
+| [**`summarization`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) | XSum | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)
+| [**`text-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) | GLUE | ✅ | ✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)
+| [**`text-generation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation) | - | n/a | - | - | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)
+| [**`token-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) | CoNLL NER | ✅ |✅ | ✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)
+| [**`translation`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) | WMT | ✅ | ✅ |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
+| [**`speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | TIMIT | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)
+| [**`multi-lingual speech-recognition`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition) | Common Voice | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)
+| [**`audio-classification`**](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) | SUPERB KS | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)
+| [**`image-classification`**](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | CIFAR-10 | ✅ | - |✅ | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)
## Running quick tests
diff --git a/notebooks/README.md b/notebooks/README.md
index cd284323e4b..38b4b60d934 100644
--- a/notebooks/README.md
+++ b/notebooks/README.md
@@ -31,51 +31,51 @@ You can open any page of the documentation as a notebook in colab (there is a bu
| Notebook | Description | | |
|:----------|:-------------|:-------------|------:|
-| [Quicktour of the library](https://github.com/huggingface/notebooks/blob/master/transformers_doc/quicktour.ipynb) | A presentation of the various APIs in Transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/quicktour.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/quicktour.ipynb)|
-| [Summary of the tasks](https://github.com/huggingface/notebooks/blob/master/transformers_doc/task_summary.ipynb) | How to run the models of the Transformers library task by task |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/task_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/task_summary.ipynb)|
-| [Preprocessing data](https://github.com/huggingface/notebooks/blob/master/transformers_doc/preprocessing.ipynb) | How to use a tokenizer to preprocess your data |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/preprocessing.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/preprocessing.ipynb)|
-| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/master/transformers_doc/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/training.ipynb)|
-| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/master/transformers_doc/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/tokenizer_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/tokenizer_summary.ipynb)|
-| [Multilingual models](https://github.com/huggingface/notebooks/blob/master/transformers_doc/multilingual.ipynb) | How to use the multilingual models of the library |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/multilingual.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/multilingual.ipynb)|
-| [Fine-tuning with custom datasets](https://github.com/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb) | How to fine-tune a pretrained model on various tasks |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb)|
+| [Quicktour of the library](https://github.com/huggingface/notebooks/blob/main/transformers_doc/quicktour.ipynb) | A presentation of the various APIs in Transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/quicktour.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/quicktour.ipynb)|
+| [Summary of the tasks](https://github.com/huggingface/notebooks/blob/main/transformers_doc/task_summary.ipynb) | How to run the models of the Transformers library task by task |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/task_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/task_summary.ipynb)|
+| [Preprocessing data](https://github.com/huggingface/notebooks/blob/main/transformers_doc/preprocessing.ipynb) | How to use a tokenizer to preprocess your data |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/preprocessing.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/preprocessing.ipynb)|
+| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/main/transformers_doc/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/training.ipynb)|
+| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/main/transformers_doc/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/tokenizer_summary.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/tokenizer_summary.ipynb)|
+| [Multilingual models](https://github.com/huggingface/notebooks/blob/main/transformers_doc/multilingual.ipynb) | How to use the multilingual models of the library |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/multilingual.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/multilingual.ipynb)|
+| [Fine-tuning with custom datasets](https://github.com/huggingface/notebooks/blob/main/transformers_doc/custom_datasets.ipynb) | How to fine-tune a pretrained model on various tasks |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/custom_datasets.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/custom_datasets.ipynb)|
### PyTorch Examples
| Notebook | Description | | |
|:----------|:-------------|:-------------|------:|
-| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)|
-| [Train your language model](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch.ipynb)|
-| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)|
-| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)|
-| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/master/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)|
-| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/master/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)|
-| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/multiple_choice.ipynb)|
-| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/master/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/translation.ipynb)|
-| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/master/examples/summarization.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/summarization.ipynb)|
-| [How to fine-tune a speech recognition model in English](https://github.com/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on TIMIT | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/speech_recognition.ipynb)|
-| [How to fine-tune a speech recognition model in any language](https://github.com/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a multi-lingually pretrained speech model on Common Voice | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/multi_lingual_speech_recognition.ipynb)|
-| [How to fine-tune a model on audio classification](https://github.com/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on Keyword Spotting | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/audio_classification.ipynb)|
-| [How to train a language model from scratch](https://github.com/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)|
-| [How to generate text](https://github.com/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)| How to use different decoding methods for language generation with transformers | [](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)|
-| [How to generate text (with constraints)](https://github.com/huggingface/blog/blob/master/notebooks/53_constrained_beam_search.ipynb)| How to guide language generation with user-provided constraints | [](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/53_constrained_beam_search.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/master/notebooks/53_constrained_beam_search.ipynb)|
-| [How to export model to ONNX](https://github.com/huggingface/notebooks/blob/master/examples/onnx-export.ipynb)| Highlight how to export and run inference workloads through ONNX |
-| [How to use Benchmarks](https://github.com/huggingface/notebooks/blob/master/examples/benchmark.ipynb)| How to benchmark models with transformers | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/benchmark.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/benchmark.ipynb)|
-| [Reformer](https://github.com/huggingface/blog/blob/master/notebooks/03_reformer.ipynb)| How Reformer pushes the limits of language modeling | [](https://colab.research.google.com/github/patrickvonplaten/blog/blob/master/notebooks/03_reformer.ipynb)| [](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/master/notebooks/03_reformer.ipynb)|
-| [How to fine-tune a model on image classification](https://github.com/huggingface/notebooks/blob/master/examples/image_classification.ipynb) | Show how to preprocess the data and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/image_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/image_classification.ipynb)|
+| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
+| [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|
+| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)|
+| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)|
+| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)|
+| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)|
+| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)|
+| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)|
+| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)|
+| [How to fine-tune a speech recognition model in English](https://github.com/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on TIMIT | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)|
+| [How to fine-tune a speech recognition model in any language](https://github.com/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a multi-lingually pretrained speech model on Common Voice | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)|
+| [How to fine-tune a model on audio classification](https://github.com/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on Keyword Spotting | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)|
+| [How to train a language model from scratch](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)|
+| [How to generate text](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| How to use different decoding methods for language generation with transformers | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)|
+| [How to generate text (with constraints)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| How to guide language generation with user-provided constraints | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)|
+| [How to export model to ONNX](https://github.com/huggingface/notebooks/blob/main/examples/onnx-export.ipynb)| Highlight how to export and run inference workloads through ONNX |
+| [How to use Benchmarks](https://github.com/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| How to benchmark models with transformers | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/benchmark.ipynb)|
+| [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| How Reformer pushes the limits of language modeling | [](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)|
+| [How to fine-tune a model on image classification](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | Show how to preprocess the data and fine-tune any pretrained Vision model on Image Classification | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)|
### TensorFlow Examples
| Notebook | Description | | |
|:----------|:-------------|:-------------|------:|
-| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb)|
-| [Train your language model](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch-tf.ipynb) | How to easily start using transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling_from_scratch-tf.ipynb)|
-| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)|
-| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/language_modeling-tf.ipynb)|
-| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb)|
-| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb)|
-| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/master/examples/multiple_choice-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/multiple_choice-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/multiple_choice-tf.ipynb)|
-| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/master/examples/translation-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/translation-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/translation-tf.ipynb)|
-| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/summarization-tf.ipynb)|
+| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
+| [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb) | How to easily start using transformers |[](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb)|
+| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)|
+| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)|
+| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)|
+| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)|
+| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)|
+| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)|
+| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)|
### Optimum notebooks
@@ -83,8 +83,8 @@ You can open any page of the documentation as a notebook in colab (there is a bu
| Notebook | Description | | |
|:----------|:-------------|:-------------|------:|
-| [How to quantize a model with ONNX Runtime for text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification_quantization_ort.ipynb)| Show how to apply static and dynamic quantization on a model using [ONNX Runtime](https://github.com/microsoft/onnxruntime) for any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification_quantization_ort.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification_quantization_ort.ipynb)|
-| [How to quantize a model with Intel Neural Compressor for text classification](https://github.com/huggingface/notebooks/blob/master/examples/text_classification_quantization_inc.ipynb)| Show how to apply static, dynamic and aware training quantization on a model using [Intel Neural Compressor (INC)](https://github.com/intel/neural-compressor) for any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification_quantization_inc.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/master/examples/text_classification_quantization_inc.ipynb)|
+| [How to quantize a model with ONNX Runtime for text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| Show how to apply static and dynamic quantization on a model using [ONNX Runtime](https://github.com/microsoft/onnxruntime) for any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)|
+| [How to quantize a model with Intel Neural Compressor for text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_quantization_inc.ipynb)| Show how to apply static, dynamic and aware training quantization on a model using [Intel Neural Compressor (INC)](https://github.com/intel/neural-compressor) for any GLUE task. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_inc.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_inc.ipynb)|
## Community notebooks:
diff --git a/utils/release.py b/utils/release.py
index 77c5f764870..5a9c15f6ae0 100644
--- a/utils/release.py
+++ b/utils/release.py
@@ -66,7 +66,7 @@ def global_version_update(version, patch=False):
update_version_in_examples(version)
-def clean_master_ref_in_model_list():
+def clean_main_ref_in_model_list():
"""Replace the links from main doc tp stable doc in the model list of the README."""
# If the introduction or the conclusion of the list change, the prompts may need to be updated.
_start_prompt = "🤗 Transformers currently provides the following architectures"
@@ -124,7 +124,7 @@ def pre_release_work(patch=False):
global_version_update(version, patch=patch)
if not patch:
print("Cleaning main README")
- clean_master_ref_in_model_list()
+ clean_main_ref_in_model_list()
def post_release_work():