diff --git a/model_cards/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12/README.md b/model_cards/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12/README.md new file mode 100644 index 00000000000..7701bb25f48 --- /dev/null +++ b/model_cards/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12/README.md @@ -0,0 +1,60 @@ +--- +language: +- en +tags: +- bluebert +license: +- PUBLIC DOMAIN NOTICE +datasets: +- pubmed + +--- + +# BlueBert-Base, Uncased, PubMed + +## Model description + +A BERT model pre-trained on PubMed abstracts + +## Intended uses & limitations + +#### How to use + +Please see https://github.com/ncbi-nlp/bluebert + +## Training data + +We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. +The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). + +Pre-trained model: https://huggingface.co/bert-base-uncased + +## Training procedure + +* lowercasing the text +* removing speical chars `\x00`-`\x7F` +* tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) + +Below is a code snippet for more details. + +```python +value = value.lower() +value = re.sub(r'[\r\n]+', ' ', value) +value = re.sub(r'[^\x00-\x7F]+', ' ', value) + +tokenized = TreebankWordTokenizer().tokenize(value) +sentence = ' '.join(tokenized) +sentence = re.sub(r"\s's\b", "'s", sentence) +``` + +### BibTeX entry and citation info + +```bibtex +@InProceedings{peng2019transfer, + author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, + title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, + booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, + year = {2019}, + pages = {58--65}, +} +```