diff --git a/optimization_test_pytorch.py b/optimization_test_pytorch.py new file mode 100644 index 00000000000..5021467d1f7 --- /dev/null +++ b/optimization_test_pytorch.py @@ -0,0 +1,45 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import optimization_pytorch as optimization +import torch +import unittest + + +class OptimizationTest(unittest.TestCase): + + def assertListAlmostEqual(self, list1, list2, tol): + self.assertEqual(len(list1), len(list2)) + for a, b in zip(list1, list2): + self.assertAlmostEqual(a, b, delta=tol) + + def test_adam(self): + w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) + x = torch.tensor([0.4, 0.2, -0.5]) + criterion = torch.nn.MSELoss(reduction='elementwise_mean') + optimizer = optimization.BERTAdam(params={w}, lr=0.2, schedule='warmup_linear', warmup=0.1, t_total=100) + for _ in range(100): + # TODO Solve: reduction='elementwise_mean'=True not taken into account so division by x.size(0) is necessary + loss = criterion(x, w) / x.size(0) + loss.backward() + optimizer.step() + self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) + + +if __name__ == "__main__": + unittest.main()