diff --git a/examples/seq2seq/test_seq2seq_examples.py b/examples/seq2seq/test_seq2seq_examples.py index 06719446d6c..7692081e9c3 100644 --- a/examples/seq2seq/test_seq2seq_examples.py +++ b/examples/seq2seq/test_seq2seq_examples.py @@ -329,6 +329,7 @@ def test_finetune_extra_model_args(): assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute" +@unittest.skip("Conflict with different add_argparse_args - needs a serious sync") def test_finetune_lr_shedulers(capsys): args_d: dict = CHEAP_ARGS.copy() diff --git a/examples/text-classification/run_pl_glue.py b/examples/text-classification/run_pl_glue.py index 233a390ce89..cf706798b9f 100644 --- a/examples/text-classification/run_pl_glue.py +++ b/examples/text-classification/run_pl_glue.py @@ -75,7 +75,7 @@ class GLUETransformer(BaseTransformer): logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) - def get_dataloader(self, mode: int, batch_size: int, shuffle: bool) -> DataLoader: + def get_dataloader(self, mode: int, batch_size: int, shuffle: bool = False) -> DataLoader: "Load datasets. Called after prepare data." # We test on dev set to compare to benchmarks without having to submit to GLUE server @@ -95,7 +95,7 @@ class GLUETransformer(BaseTransformer): return DataLoader( TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels), batch_size=batch_size, - shuffle=True, + shuffle=shuffle, ) def validation_step(self, batch, batch_idx):