diff --git a/model_cards/cedpsam/chatbot_fr/README.md b/model_cards/cedpsam/chatbot_fr/README.md index 3accff317d1..afb79847749 100644 --- a/model_cards/cedpsam/chatbot_fr/README.md +++ b/model_cards/cedpsam/chatbot_fr/README.md @@ -1,7 +1,46 @@ --- language: fr +tags: +- conversational +widget: +- text: "bonjour." +widget: +- text: "mais encore" +widget: +- text: "est ce que l'argent achete le bonheur?" --- ## a dialoggpt model trained on french opensubtitles with custom tokenizer trained with this notebook https://colab.research.google.com/drive/1pfCV3bngAmISNZVfDvBMyEhQKuYw37Rl#scrollTo=AyImj9qZYLRi&uniqifier=3 + +config from microsoft/DialoGPT-medium +### How to use + +Now we are ready to try out how the model works as a chatting partner! + +```python +import torch +from transformers import AutoTokenizer, AutoModelWithLMHead + +tokenizer = AutoTokenizer.from_pretrained("cedpsam/chatbot_fr") + +model = AutoModelWithLMHead.from_pretrained("cedpsam/chatbot_fr") + +for step in range(6): + # encode the new user input, add the eos_token and return a tensor in Pytorch + new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') + # print(new_user_input_ids) + + # append the new user input tokens to the chat history + bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids + + # generated a response while limiting the total chat history to 1000 tokens, + chat_history_ids = model.generate( + bot_input_ids, max_length=1000, + pad_token_id=tokenizer.eos_token_id, + top_p=0.92, top_k = 50 + ) + + # pretty print last ouput tokens from bot + print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))