From 0ac33ddd8d65dff455f8d8eab9f566b6e085a9d2 Mon Sep 17 00:00:00 2001 From: ktrapeznikov Date: Mon, 6 Apr 2020 10:00:30 -0400 Subject: [PATCH] Create README.md --- .../biobert_v1.1_pubmed_squad_v2/README.md | 64 +++++++++++++++++++ 1 file changed, 64 insertions(+) create mode 100644 model_cards/ktrapeznikov/biobert_v1.1_pubmed_squad_v2/README.md diff --git a/model_cards/ktrapeznikov/biobert_v1.1_pubmed_squad_v2/README.md b/model_cards/ktrapeznikov/biobert_v1.1_pubmed_squad_v2/README.md new file mode 100644 index 00000000000..2f4c081dc37 --- /dev/null +++ b/model_cards/ktrapeznikov/biobert_v1.1_pubmed_squad_v2/README.md @@ -0,0 +1,64 @@ +### Model +**[`monologg/biobert_v1.1_pubmed`](https://huggingface.co/monologg/biobert_v1.1_pubmed)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py)** + +This model is cased. + +### Training Parameters +Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb +```bash +BASE_MODEL=monologg/biobert_v1.1_pubmed +python run_squad.py \ + --version_2_with_negative \ + --model_type albert \ + --model_name_or_path $BASE_MODEL \ + --output_dir $OUTPUT_MODEL \ + --do_eval \ + --do_lower_case \ + --train_file $SQUAD_DIR/train-v2.0.json \ + --predict_file $SQUAD_DIR/dev-v2.0.json \ + --per_gpu_train_batch_size 18 \ + --per_gpu_eval_batch_size 64 \ + --learning_rate 3e-5 \ + --num_train_epochs 3.0 \ + --max_seq_length 384 \ + --doc_stride 128 \ + --save_steps 2000 \ + --threads 24 \ + --warmup_steps 550 \ + --gradient_accumulation_steps 1 \ + --fp16 \ + --logging_steps 50 \ + --do_train +``` + +### Evaluation + +Evaluation on the dev set. I did not sweep for best threshold. + +| | val | +|-------------------|-------------------| +| exact | 75.97068980038743 | +| f1 | 79.37043950121722 | +| total | 11873.0 | +| HasAns_exact | 74.13967611336032 | +| HasAns_f1 | 80.94892513460755 | +| HasAns_total | 5928.0 | +| NoAns_exact | 77.79646761984861 | +| NoAns_f1 | 77.79646761984861 | +| NoAns_total | 5945.0 | +| best_exact | 75.97068980038743 | +| best_exact_thresh | 0.0 | +| best_f1 | 79.37043950121729 | +| best_f1_thresh | 0.0 | + + +### Usage + +See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: +```python +start_scores, end_scores = model(input_ids) +span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] +ignore_score = span_scores[:,0,0] #no answer scores + +``` +