
Final Modules List

Functional Modules to be implemented for Bahmni

1. Bahmni_atom_feed:
Dependency : ​base, auth_crypt, bahmni_product, bahmni_sale
Master Data required :
Village​: In localization we can create 1 new object for storing villages, as existing bahmni
module has this field as char, we can replace it with many2one field.

● This module will be useful for all activities, which are needed to sync Bahmni data with
openerp.

● This module will have dependency of product and sale module.
● This module also consists dhis report, which can be generated from company’s form

view.

Class
Name

Implementation Class
exists

In
modul

e

Developmen
t status

drug.service.create New class​ has to be defined for creating products, whic​h
will be replacement of 5 classes of existing
bahmni_modules i.e. drug.service, lab.test.service,
lab.panel.service, radiology.test.service​.
This class would not create table in database, as storing api
call information is not necessary.

New
class

Done

product.uom.service New class​ for syncing i.e. creating/updating product.uom
and product.uom.category records , which we get from
bahmni’s api call to openerp. This class will not create a
table in database.

New
class

Done

atom.event.worker New class​ to which api call is done from bahmni side. This
class won’t create a table. Will consist a method to process
all the events.

New
class

Done

event.records A ​new class​ for publishing events, whenever there is any
change done in specified category. e.g. If any change is
done to product, a new product is created or product is
deleted such events are stored in form of event records.

New
class

Done

res.partner ● Override name_get method to add ref field in string
returned by it.

● Add unique constraint on ref field of customer.
● Add many2one field for village.

base Done

res.partner.address ● This class stores the details for the address of
partner and a one2many field has added in

New
class

Done

Final Modules List

res.partner, which is associated with this class.
● Since each time partner details are getting updated

existing record from the class is getting unlinked,
hence removing dependency of this class, as all the
fields exists in partner itself.

res.partner.attribute
s

● This class is having a single field partner_id, as a
field one2many exists in class res_partner.

● And this class is nowhere getting used, instead just
used while updating partner details, stating no use
of this class, hence eliminating dependency of this
class

New
Class

Done

res.company ● New field need to be added for dhis2_code
● New action has to be added to res.company to

export generated csv.

base Done

res.users ● Override password field definition, and make it
normal char field, hence it automatically removes
effect of methods getting called for computing this
field.

● New method to generate
salt(md5_encrypted_string).

● Override check_credentials method to set this md5
encrypted string in password crypt.

● Inherit write method, to set password_crypt as md5
encrypted string.

auth_cr
ypt

Not Done,

=======
Didn’t get
why exactly it
is done, and
md5_crypt is
deprecated,
hence not
disturbing
anything in
authorization

order.picking.type.m
apping

New Object for mapping OrderType passed through
bahmni and Picking Type existing in Odoo.
As for creating sale order, we need warehouse_id
instead of shop_id in version 10.

 Done

syncable.units New object for storing units which are allowed sync as it
is

 Done

Final Modules List

2. bahmni_product
Dependency : ​product, product_expiry
● This Module is custom addon for bahmni, which consists of all the customization related to

product.

product.category ● new character field need to added ​uuid​, and set
it’s value by overriding create method. since this
id will act as unique id for that record, no need
to update it on write.

● this uuid field is synced with bahmni and emr ,
hence it’s value is get from the api call, if no
value got from call then it’s generated.

product Done

product.uom ● new character field need to added ​uuid​, and set
it’s value by overriding create method. since this
id will act as unique id for that record, no need
to update it on write.

● this uuid field is synced with bahmni and emr ,
hence it’s value is get from the api call, if no
value got from call then it’s generated.

product Done

product.uom.category ● new character field need to added ​uuid​, and set
it’s value by overriding create method. since this
id will act as unique id for that record, no need
to update it on write.

● this uuid field is synced with bahmni and emr ,
hence it’s value is get from the api call, if no
value got from call then it’s generated.

product Done

res.partner New Fields:
manufacturer: A boolean field to identify whether
partner is manufacturer.

 Done

product.supplierinfo ● New fields:
○ unit_price​: functional field for getting

price from pricelist.partnerinfo, as
whenever value in that one2many field is
filled, and that supplier is selected in
purchase quotation, price is taken from
record which has highest sequence i.e.
lower value in sequence field.

■ This field should be visible only
when pricelist.partnerinfo’s
one2many field is visible. As this
field is only computed when
there is record in
pricelist.partnerinfo.

product Done

Final Modules List

○ manufacturer​: many2one field with
res.partner class, and domain applied
for partner which are manufacturers.

product.template ● Override def create and write to set mrp in
related product_product record

● New fields :
○ New float field for mrp.
○ manufacturer : many2one field for

showing partners in which manufacturer
checkbox is checked.

○ drug: character field to store generic
name of product.

 Done

product.product ● New field for ​dhis_code2​ has to be added.
● Override get_product_available method to list

products which are not expired.
● New fields:

○ uuid: character field to identify product
while reverse-sync

○ actual_stock : functional field , for
computing actual stock of product in
warehouse, if location provided then for
that specific location.

○ mrp : float field for storing mrp of
product, when product variants are
defined for a product mrp will get
maintained at variant level, hence this
separate field.

● name_get is overridden to add product category
as suffix. - name_get is overridden for showing
category as suffix, this can be seen on any
many2one field with relation: product.product.

product Done

3. bahmni_purchase :
Dependency : ​purchase, bahmni_product
● This module is for customization in purchase module. hence, in this module there will be

dependency of purchase module.

purchase.order.line ● New fields:
○ mrp​: Float field, which will get value of

mrp from product master, if set else user
can set.

○ manufacturer​: many2one field for setting

purchase Done

Final Modules List

value of manufacturer.
○ product_category​: many2one field of

product.category to store value of
category of product set in the product
master.

● override product_id onchange method to set all
above values.

product.product ● New methods defined to get mrp from
supplierinfo, if available ; else set mrp : def
get_mrp​ and def ​set_mrp​ from
bahmni_pharmacy_product to be referred.

● low_stock​: boolean field, but a functional field,
and is set when available quantities for a product
are below minimum qty level mentioned in
reordering level.

product Done

4. bahmni_sale:

Dependency : ​sale, sale_stock, bahmni_account
● Master Data: ​Sale price markup table configuration.
● New widget created for link-prescription, for adding a new button to redirect to bahmni

app.
Try : ​instead of widget, if normal button can be used in js functionality, Or is there any
other way to redirect to url.

● Sale Order report is overridden to add provider name column in the report.
● New report has to be added for Average Turnaround time and sale turnaround time.

sale.order ● New fields

○ external_id: ​this field stores the
encounter ID got from api call.

○ dispensed​: A boolean field, to identify
whether drug order is dispensed or not.

● Create Invoice button’s type is changed from
action to workflow.

● directly workflow signal action_invoice_create is
called on button.

New fields:
● Datetime_order : Datetime type field.

○ Override create and write method to set
value of date_order field.

○ date_order field to be made invisible.
Date_order field is already datetime type.

● partner_village: many2one field with village class,
which is set as master data in bahmni_atom_feed
module.

● partner_uuid: unique id required in case of

sale,
sale_stoc
k

Done

Final Modules List

reverse sync.
● Both partner_village and partner_uuid values will

be populated on change of partner_id.
● care_setting: selection field for giving user option

to select between IPD/OPD.
● provider_name: many2one field with res.partner.
● discount_percentage : float field for entering

discount percentage depending on type of
discount.

● Chargeable_amount : if user is allowed to do so,
this field will be editable to user for setting overall
chargeable amount.

○ This field is also visible on setting a sale
configuration.

● Default_quantity : field visible to user, who is
allowed to set default quantity to -1.

○ This field is used when sale order is
getting created from Bahmni prescription.

○ When in sale configuration, configuration
for allowing default quantity as -1 is set, in
order lines -1 quantity is set.

● discount_amount: if type of discount is fixed, then
entering fixed discount amount in this field.

● round_off: round_off amount calculated based on
round off by value set in the configuration.

● discount_acc_id: Discount Account head.
● prev_outstanding_balance, total_outstanding :

functional fields to get previous balances for
partner.

● def _prepare_order_line_move has to be
overridden to add prodlot_id to move_line values.

sale.order.line ● external_id : ​this field stores the encounter ID
got from api call.

● external_order_id​: this field stores the order ID
got from api call. This ID will help us to identify,
that this line belongs to which sale order.

● order_uuid​: new char field for just generating a
random unique id, using uuid.

○ Override create and write​ method to set
value of order_uuid, if passed through api,
else generate a random unique sequence
using uuid package of python.

○ Track the dispensed status of order while
processing order line too.

sale Done

stock.move.split.line ● Default method is set for sale_price field. Done

Final Modules List

s ● Onchange of cost_price new method is defined to
set sale_price.

● For calculating sale_price
markup_percentage table is hard coded in
this method, which can be made configurable.

● Since, this method has to be applied only on
incoming shipments, moving this code to
purchase module only.

sale.config.settings ● New fields has to be added :
○ convert_dispensed: which allows directly

confirm sale order, if drug is dispensed
from local shop.

○ group_final_so_charge : one new field
added to sale order, which is changeable
for user, this amount will be considered as
final chargeable amount.

○ group_default_quantity : added this field
to allow setting product qty to -1. Field is
defined in this module, but used in
bahmni_atom_feed module. And only
allowed to add -1 qty when sale order
created through medication.

○ round_off_by : this is the field used for
rounding off amount to specified value.
This method has to be generic as, this
method is used.

● New method has to be added: def
set_convert_dispensed

sale Done

sale.order.line.make.
invoice

● def make_invoices overridden to set the values
for newly added fields in invoice

● There are 2 methods involved for creating invoice
from sale_order, so one is for down_payment and
other is for invoiceable amount for delivered
product depending on invoice_policy.

sale Done

5. bahmni_account:

Dependency : ​account, account_voucher
● New widget print-bill is introduced in this module, to directly give print command to

printer.This widget is used on button which is shown on customer payment form, when
user validate payment.

● One controller is written to fetch the bill details to qweb template, called in widget.
● There is method written for converting number to marathi, but not used in report.

account.invoice override def invoice_pay_customer, to return view_id of account Done

Final Modules List

view_vendor_receipt_form, instead of
view_vendor_receipt_dialog_form.
New fields added :

● discount : float field for fixed percentage.
● discount_per : float field to define discount

percentage.
● discount_method: field to select type of discount,

fixed/percentage
● def compute_invoice_totals overridden to define

logic for invoices of type out_refund.
● def action_move_create is overridden to debit

invoice discount against respective account head.
And for that new method is defined i.e. def
_update_discount_head.

● def _prepare_invoice method is overridden to add
values for new fields added in account.invoice

account.move Override def validate method.
if​ ​abs(amount) < 10 ** -4​ is changed to ​if abs(amount)
< 0.

account

Account.voucher
Customization from
bahmni module is
applied to
account.payment as
new class defined for
payment.

● New fields added ;
○ Balance_before_pay​: this field is added

to account_voucher to know the due
amount for invoice or customer/supplier

○ Total_balance​: amount that would reflect
the amount which would be pending after
paying mentioned amount.

○ Invoice_id​: searched invoice from credit
lines of voucher.

○ Bill_amount​: field to get the invoice total
amount.

○ But in invoice_id, only single invoice is
getting considered and bill_amount also
reflect the amount of single invoice.

Above fields instead of adding to account_voucher,
added to account_payment, as payment is done
through that object only.

● _get_journal method is overridden to overwrite a
condition.

○ There is a condition for checking ttype
value, and if that value matches to
payment or receipt then journal type
should be bank ; but removed this
condition and made ttype to cash.

account_vo
ucher

Final Modules List

 This is achieved in Odoo 10 in account_payment
class by applying (bank, cash) domain in field
definition itself.
Hence overriding field definition to set domain of
cash only.

● Inherit default report of account.voucher to add
new fields in that report. & replace this inherited
report with original one.

● onchange_partner_id​ method has to be
overridden to populate amount to be paid in
amount field.

● New button to print the receipt, which will give
print command to machine, instead of
downloading report.

○ These reports are generated using
controller.

○ In this controller, error handling has to be
done, when account_voucher does not
have sale_order id stored in it.

● New button to print summarised bill in English.
● New button to print summarised bill in Marathi.

res.users ● One new field initials of character type added to
partner.

base

res.company Override get_header method, to change header for
reports.

base

account.count.report ● Count of account heads in sale orders over a
period

● Sql report for getting number of invoices
generated in the system for an account,
date-wise.

● Filter has to be added required accounts only.
Account type has been hard-coded.

NEED TO TRY: If this can be configurable.
If configurable filter is not possible then, this filter
will be treated as part of search_setup_data.

New class Done

account.report Sql report for getting account wise expense and
collection.

New class Done

6. bahmni_web_extension :

Dependency : ​base, web
● accesskeyHighlight.js​ : Defining Accesskey in buttons. These Access keys are

underlined and capitalized for buttons in which accesskey is defined.

Final Modules List

● addContextOnExport.js​ : On click of export data, added domain, context and ids in
returned action.

● addingAccessKeyToOne2ManyList.js​: replaced string 'add an item' to Add an Item.
● addSerialNumberToListView.js​: Added Sr.No. to each item in tree view. for each page,

this sr.no. is generated.
● fixingErrorInCancelEdition.js​: Error handling done in method cancel_edition. If attrs is not

null, then only attrs.id condition has been checked.
● init.js​ : initialisation of all the above files..
➢ overriding index method has solved the issue of exporting csv, which was getting faced

in default web module.

7. bahmni_stock
Dependency : ​stock​, ​bahmni_product, bahmni_account

product.template procure_method​: set default value to
make_to_stock

procurement Done

product.product ● new method added to class, def
get_stock_for_location to get the available
quantities of product at selected location.

○ This method is used when available
quantities for specific location is to be
computed.

○ This method is dependant on
batch.stock.future.forecast

stock.picking ● New boolean field has to added: warned.
● New onchange method has been added on

location fields. So that the locations which
are selected in the parent form, will get
reflected in the child lines. -​ In child lines
values for location_id and
location_destination_id are passed
through context

stock

stock.partial.picking ● Def do_partial is inherited to add validation
when picking_type is not internal on these
two conditions :

● When duplicate serial number is entered or
no serial number is entered -
In the window where serial numbers has
to be added, there is validation for
duplicate serial number by default.
In bahmni new field is added for serial
number in stock_move, which is not
required.

stock

Final Modules List

● Override def do_partial. To raise warning
when warned flag is set in picking.

stock.move ● Method onchange_lot_id is overridden to
add warning message when selected serial
number/lot is already expired.
If lot is expired, and it cannot be
processed, instead of raising warning of
expired lot, will filter out records in lot_id
field to show only those records which
are not expired.

● New method defined
_get_stock_for_location, for getting available
product quantities at selection location.

○ For this new field for available qty is
added to stock_pack_operation,
which will reflect actual qty in stock
for product.

○ New field in
stock_pack_operation_lot to reflect
available qty for specific lot.

● New field added : stock_availlable
○ Onchange_product_id method is

overridden to set qty , which is
obtained from
_get_stock_for_location method call.

 Detailed description is in previous pt.
● New field added : stock_picking_time

○ This is a functional field, whose value
is set from picking’s date value.

stock

stock.move.split New field added : stock_move
Whose value is set as active_id, through overriding
default_get method.
Rest other values were set in default stock module
only.

stock

account.invoice.line ● New fields ​batch_name​ and ​expiry_date​ to
be added.

account

batch.stock.future.fore
cast

● This a new object introduced in this module,
but this a sql record, and hence records of
this object are auto-created through sql view
query.

● Introduced to get list of serial number
according to their future availability.

● This class is used to get available qty for a

New class Done

Final Modules List

batch at specific location.

prod_last_moved.repo
rt

This is a new sql report developed to get the view
for getting list of products with their respective last
moved date.
Last moved date is date of movement of product
from one location to another.

New class Done

prodlots.report New sql report of products to track the serial
number by location. This report shows the serial
number and its current location and qty at that
location.
This can be seen from stock quanrs view, hence
eliminated new report

New class

Final Modules List

Setup data modules for already implemented projects.

1. jss_setup_data :

● Refer data files from ​lab_seed_setup​ module.
● these files contains data for creating Accounts, Product Category, Suppliers, Unit of

measure, stock location.
● Change of date format
● deletion of service product, which by default created on openerp installation.

2. jss_logger:
● Refer ​bahmni_logger​ module.
● SMTP logger specifically designed for jss.
● As on bahmni wiki, it’s been instructed to uninstall this module; since this module is set

to install automatically.

3. search_setup_data :
● Refer to data files in ​search_seed_setup​ module.
● These data files consists of data for creating Accounts, Product Categories, Products,

Unit Of measures, Stock Location, Warehouse and shop.
● Service product which gets created on default openerp installation , has to be deleted.
● In settings.xml, main company data is changed, and it’s partner data is also changed,

partner’s name, city, image, phone, email is changed.
● Hard-coded filter added to account.count.report is also part of search_setup_data, if

configurable filter is not possible.

Migration of Existing Data

● For migrating existing data of bahmni getting used, we will need to write a separate
migration script for each project.

● This script will depend on modules getting used; if any additional custom module is used,
then will need to do some changes in migration script.

● It can’t be generic for all the bahmni projects which are already implemented.

